0000000000267174
AUTHOR
Gianbiagio Curato
How Tick Size Affects the High Frequency Scaling of Stock Return Distributions
We study the high frequency scaling of the distributions of returns for stocks traded at NASDAQ market as a function of the tick-to-price ratio. The tick-to-price ratio is a measure of an effective tick size. We find dramatic differences between distributions for assets with large and small tick-to-price ratio. The presence of returns clustering is evident for large tick size assets. The statistical differences between large and small tick size assets appear to reduce at higher time scales of observation. A possible way to explain returns dynamics for large tick size assets is the coupling of returns with bid-ask spread dynamics. A simple Markov- switching model is able to reproduce the pro…
Modeling the coupled return-spread high frequency dynamics of large tick assets
Large tick assets, i.e. assets where one tick movement is a significant fraction of the price and bid-ask spread is almost always equal to one tick, display a dynamics in which price changes and spread are strongly coupled. We introduce a Markov-switching modeling approach for price change, where the latent Markov process is the transition between spreads. We then use a finite Markov mixture of logit regressions on past squared returns to describe the dependence of the probability of price changes. The model can thus be seen as a Double Chain Markov Model. We show that the model describes the shape of return distribution at different time aggregations, volatility clustering, and the anomalo…
Multiscale Model Selection for High-Frequency Financial Data of a Large Tick Stock by Means of the Jensen–Shannon Metric
Modeling financial time series at different time scales is still an open challenge. The choice of a suitable indicator quantifying the distance between the model and the data is therefore of fundamental importance for selecting models. In this paper, we propose a multiscale model selection method based on the Jensen–Shannon distance in order to select the model that is able to better reproduce the distribution of price changes at different time scales. Specifically, we consider the problem of modeling the ultra high frequency dynamics of an asset with a large tick-to-price ratio. We study the price process at different time scales and compute the Jensen–Shannon distance between the original…