0000000000267199

AUTHOR

Bhupinder Singh Saini

0000-0003-2455-3008

Automatic surrogate modelling technique selection based on features of optimization problems

A typical scenario when solving industrial single or multiobjective optimization problems is that no explicit formulation of the problem is available. Instead, a dataset containing vectors of decision variables together with their objective function value(s) is given and a surrogate model (or metamodel) is build from the data and used for optimization and decision-making. This data-driven optimization process strongly depends on the ability of the surrogate model to predict the objective value of decision variables not present in the original dataset. Therefore, the choice of surrogate modelling technique is crucial. While many surrogate modelling techniques have been discussed in the liter…

research product

Interactivized : Visual Interaction for Better Decisions with Interactive Multiobjective Optimization

In today’s data-driven world, decision makers are facing many conflicting objectives. Since there is usually no solution that optimizes all objectives simultaneously, the aim is to identify a solution with acceptable trade-offs. Interactive multiobjective optimization methods are iterative processes in which a human decision maker repeatedly provides one’s preferences to request computing new solutions and compares them. With these methods, the decision maker can learn about the problem and its limitations. However, advanced optimization software usually offer simple visualization tools that can be significantly improved. On the other hand, current approaches for multiobjective optimization…

research product

A New Paradigm in Interactive Evolutionary Multiobjective Optimization

Over the years, scalarization functions have been used to solve multiobjective optimization problems by converting them to one or more single objective optimization problem(s). This study proposes a novel idea of solving multiobjective optimization problems in an interactive manner by using multiple scalarization functions to map vectors in the objective space to a new, so-called preference incorporated space (PIS). In this way, the original problem is converted into a new multiobjective optimization problem with typically fewer objectives in the PIS. This mapping enables a modular incorporation of decision maker’s preferences to convert any evolutionary algorithm to an interactive one, whe…

research product

Optimistic NAUTILUS navigator for multiobjective optimization with costly function evaluations

AbstractWe introduce novel concepts to solve multiobjective optimization problems involving (computationally) expensive function evaluations and propose a new interactive method called O-NAUTILUS. It combines ideas of trade-off free search and navigation (where a decision maker sees changes in objective function values in real time) and extends the NAUTILUS Navigator method to surrogate-assisted optimization. Importantly, it utilizes uncertainty quantification from surrogate models like Kriging or properties like Lipschitz continuity to approximate a so-called optimistic Pareto optimal set. This enables the decision maker to search in unexplored parts of the Pareto optimal set and requires …

research product

Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework

Solving real-life data-driven multiobjective optimization problems involves many complicated challenges. These challenges include preprocessing the data, modelling the objective functions, getting a meaningful formulation of the problem, and supporting decision makers to find preferred solutions in the existence of conflicting objective functions. In this paper, we tackle the problem of optimizing the composition of microalloyed steels to get good mechanical properties such as yield strength, percentage elongation, and Charpy energy. We formulate a problem with six objective functions based on data available and support two decision makers in finding a solution that satisfies them both. To …

research product