0000000000267439

AUTHOR

Marie Muller

Prediction of bone mechanical properties using QUS and pQCT: study of the human distal radius.

Abstract The objective was to compare the prediction of bone mechanical properties provided by axial transmission to that provided by peripheral quantitative computed tomography (pQCT) at the distal radius. The distal radius is the location for Colles’ fractures, a common osteoporosis related trauma situation. Measurements of the radial speed of sound were performed using three axial transmission devices: a commercial device (Sunlight Omnisense, 1.25 MHz), a bi-directional axial transmission prototype (1 MHz), both measuring the velocity of the first arriving signal (FAS), and a low frequency (200 kHz) device, measuring the velocity of a slower wave. Co-localized pQCT measurements of bone m…

research product

Comparison of three ultrasonic axial transmission methods for bone assessment.

Abstract This study compared three approaches to bone assessment using ultrasonic axial transmission. In 41 fresh human radii, velocity of the first arriving signal was measured with a commercial device (Sunlight Omnisense ™ ) operating at 1.25 MHz, a prototype based on 1-MHz bidirectional axial transmission and a low-frequency (200 kHz) prototype, also measuring the velocity of a slower wave. Cortical and trabecular bone mineral density, cortical thickness and cross-sectional area were determined by peripheral quantitative computed tomography. Significant but modest correlation between velocities reflects differences in the nature of the propagating waves and methodological differences. Of…

research product