0000000000267503

AUTHOR

James Zanotti

0000-0002-3936-1597

showing 6 related works from this author

First moments of the nucleon generalized parton distributions from lattice QCD

2012

We report on our lattice calculations of the nucleon's generalized parton distributions (GPDs), concentrating on their first moments for the case of N_f=2. Due to recent progress on the numerical side we are able to present results for the generalized form factors at pion masses as low as 260 MeV. We perform a fit to one-loop covariant baryon chiral perturbation theory with encouraging results.

010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyNuclear TheoryFOS: Physical sciencesDESYPartonLattice QCD01 natural sciencesNuclear physicsHigh Energy Physics - LatticeResearch centre0103 physical sciencesddc:530Nuclear Experiment010306 general physicsNucleon
researchProduct

Pion form factor from RBC and UKQCD

2010

Andreas Juttner, P.A. Boyle, C. Kelly, C. Maynard, J.M. Zanotti, J.M. Flynn, H.P. de Lima, C.T. Sachrajda

Form factor (design)PionChemistryMathematical physics
researchProduct

Kl3Semileptonic Form Factor from (2+1)-Flavor Lattice QCD

2008

We present the first results for the ${K}_{l3}$ form factor from simulations with $2+1$ flavors of dynamical domain wall quarks. Combining our result, namely, ${f}_{+}(0)=0.964(5)$ with the latest experimental results for ${K}_{l3}$ decays leads to $|{V}_{us}|=0.2249(14)$, reducing the uncertaintity in this important parameter. For the $O({p}^{6})$ term in the chiral expansion we obtain $\ensuremath{\Delta}f=\ensuremath{-}0.013(5)$.

QuarkPhysicsQuantum chromodynamicsParticle physics010308 nuclear & particles physicsCabibbo–Kobayashi–Maskawa matrixLattice field theoryForm factor (quantum field theory)General Physics and AstronomyLattice QCD01 natural sciencesDomain wall (magnetism)Lattice gauge theory0103 physical sciences010306 general physicsPhysical Review Letters
researchProduct

Kl3form factor withNf= 2 +1 dynamical domain wall fermions

2008

We present the latest results from the UKQCD/RBC collaborations for the Kl3 form factor from simulations with 2 + 1 flavours of dynamical domain wall quarks. Simulations are performed on lattices with two different volumes and four values of the light quark mass, allowing for an extrapolation to the chiral limit. The analysis includes a thorough investigation into the sources of systematic error in our fits. After interpolating to zero momentum transfer, we obtain f+(0) = 0.964(5) (or ?f = -0.013(5)) which, when combined with the latest experimental results for Kl3 decays, leads to |Vus| = 0.2249(14).

QuarkPhysicsHistoryParticle physicsCabibbo–Kobayashi–Maskawa matrixHigh Energy Physics::LatticeMomentum transferLattice field theoryExtrapolationForm factor (quantum field theory)FermionComputer Science ApplicationsEducationDomain wall (string theory)Journal of Physics: Conference Series
researchProduct

Dirac and Pauli form factors from lattice QCD

2011

We present a comprehensive analysis of the electromagnetic form factors of the nucleon from a lattice simulation with two flavors of dynamical O(a)-improved Wilson fermions. A key feature of our calculation is that we make use of an extensive ensemble of lattice gauge field configurations with four different lattice spacings, multiple volumes, and pion masses down to m_\pi ~ 180 MeV. We find that by employing Kelly-inspired parametrizations for the Q^2-dependence of the form factors, we are able to obtain stable fits over our complete ensemble. Dirac and Pauli radii and the anomalous magnetic moments of the nucleon are extracted and results at light quark masses provide evidence for chiral …

QuarkNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeLattice field theoryNuclear TheoryFOS: Physical sciences7. Clean energy01 natural sciencessymbols.namesakePauli exclusion principleHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530Quantum field theory010306 general physicsQuantum chromodynamicsPhysics010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)FermionLattice QCDJHigh Energy Physics - PhenomenologysymbolsNucleon
researchProduct

Parton distributions and lattice QCD calculations: A community white paper

2018

Progress in particle and nuclear physics 100, 107 - 160 (2018). doi:10.1016/j.ppnp.2018.01.007

QuarkNuclear and High Energy PhysicsParticle physicsquark: distribution functiondata analysis methodHigh Energy Physics::LatticeLattice field theoryhadron: spinFOS: Physical sciencesparton: distribution functionPartonLattice QCD01 natural sciences530hard scatteringHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)benchmarkFactorization0103 physical sciencesquantum chromodynamicsquantum chromodynamics: factorizationddc:530010306 general physicsGlobal QCD fitsQuantum chromodynamicsPhysicspolarizationgluon: distribution function010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics - Lattice (hep-lat)High Energy Physics::Phenomenologylattice field theory[ PHYS.HLAT ] Physics [physics]/High Energy Physics - Lattice [hep-lat]ObservableLattice QCDGluonHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentUnpolarized/polarized parton distribution functions (PDFs)
researchProduct