0000000000267754
AUTHOR
Céline Labart
Simulation of BSDEs with jumps by Wiener Chaos Expansion
International audience; We present an algorithm to solve BSDEs with jumps based on Wiener Chaos Expansion and Picard's iterations. This paper extends the results given in Briand-Labart (2014) to the case of BSDEs with jumps. We get a forward scheme where the conditional expectations are easily computed thanks to chaos decomposition formulas. Concerning the error, we derive explicit bounds with respect to the number of chaos, the discretization time step and the number of Monte Carlo simulations. We also present numerical experiments. We obtain very encouraging results in terms of speed and accuracy.
Donsker-Type Theorem for BSDEs: Rate of Convergence
In this paper, we study in the Markovian case the rate of convergence in Wasserstein distance when the solution to a BSDE is approximated by a solution to a BSDE driven by a scaled random walk as introduced in Briand, Delyon and Mémin (Electron. Commun. Probab. 6 (2001) Art. ID 1). This is related to the approximation of solutions to semilinear second order parabolic PDEs by solutions to their associated finite difference schemes and the speed of convergence. peerReviewed
Erratum to “Simulation of BSDEs with jumps by Wiener Chaos expansion” [Stochastic Process. Appl. 126 (2016) 2123–2162]
Abstract We correct Proposition 2.9 from “Simulation of BSDEs with jumps by Wiener Chaos expansion” published in Stochastic Processes and their Applications, 126 (2016) 2123–2162. The proposition which provides an expression for the expectation of products of multiple integrals (w.r.t. Brownian motion and compensated Poisson process) requires a stronger integrability assumption on the kernels than previously stated. This does not affect the remaining results of the article.
Random walk approximation of BSDEs with H{\"o}lder continuous terminal condition
In this paper, we consider the random walk approximation of the solution of a Markovian BSDE whose terminal condition is a locally Hölder continuous function of the Brownian motion. We state the rate of the L2-convergence of the approximated solution to the true one. The proof relies in part on growth and smoothness properties of the solution u of the associated PDE. Here we improve existing results by showing some properties of the second derivative of u in space. peerReviewed
Mean square rate of convergence for random walk approximation of forward-backward SDEs
AbstractLet (Y,Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk$B^n$from the underlying Brownian motionBby Skorokhod embedding, one can show$L_2$-convergence of the corresponding solutions$(Y^n,Z^n)$to$(Y, Z).$We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in$C^{2,\alpha}$. The proof relies on an approximative representation of$Z^n$and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to t…