Combined numerical and experimental study of microstructure and permeability in porous granular media
<div> <div> <div> <p>Fluid flow on different scales is of interest for several Earth science disciplines like petrophysics, hydrogeology and volcanology. To parameterize fluid flow in large-scale numerical simulations (e.g. groundwater and volcanic systems), flow properties on the microscale need to be considered. For this purpose experimental and numerical investigations of flow through porous media over a wide range of porosities are necessary. In the present study we sinter glass bead media with various porosities, representing shallow depth crustal sediments. The microstructure, namely effective porosity …
Equivalent continuum-based upscaling of flow in discrete fracture networks: The fracture-and-pipe model
Abstract. Predicting effective permeabilities of fractured rock masses is a key component of reservoir modelling. This is often realized with the discrete fracture network (DFN) method, where single-phase incompressible fluid flow is modelled in discrete representations of individual fractures in a network. Depending on the overall number of fractures, this can result in significant computational costs. Equivalent continuum models (ECM) provide an alternative approach by subdividing the fracture network into a grid of continuous medium cells, over which hydraulic properties are averaged for fluid flow simulations. While this has the advantage of lower computational costs and the possibility…