0000000000267805
AUTHOR
Victor Lebedev
A magnetic source imaging camera
We describe a magnetic source imaging camera (MSIC) allowing a direct dynamic visualization of the two-dimensional spatial distribution of the individual components Bx(x,y), By(x,y) and Bz(x,y) of a magnetic field. The field patterns allow—in principle— a reconstruction of the distribution of sources that produce the field B→ by inverse problem analysis. We compare experimentally recorded point-spread functions, i.e., field patterns produced by point-like magnetic dipoles of different orientations with anticipated field patterns. Currently, the MSIC can resolve fields of ≈10 pT (1 s measurement time) range in a field of view up to ∼20 × 20 mm2. The device has a large range of possible appli…
Analysis method for detecting topological defect dark matter with a global magnetometer network
Abstract The Global Network of Optical Magnetometers for Exotic physics searches (GNOME) is a network of time-synchronized, geographically separated, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. GNOME is sensitive to exotic couplings of atomic spins to certain classes of dark matter candidates, such as axions. This work presents a data analysis procedure to search for axion dark matter in the form of topological defects: specifically, walls separating domains of discrete degenerate vacua in the axion field. An axion domain wall crossing the Earth creates a distinctive signal pattern in the network that can be d…
Characterization of the global network of optical magnetometers to search for exotic physics (GNOME)
The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) is a network of geographically separated, time-synchronized, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. The GNOME is sensitive to nuclear- and electron-spin couplings to exotic fields from astrophysical sources such as compact dark-matter objects (for example, axion stars and domain walls). Properties of the GNOME sensors such as sensitivity, bandwidth, and noise characteristics are studied in the present work, and features of the network's operation (e.g., data acquisition, format, storage, and diagnostics) are described. Charac…
Search for topological defect dark matter with a global network of optical magnetometers
Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals p…