0000000000267809

AUTHOR

Christof Hättig

0000-0002-5752-2710

showing 5 related works from this author

Ground and excited state polarizabilities and dipole transition properties of benzene from coupled cluster response theory

1999

Abstract The electronic properties and transition properties have been investigated for the lowest singlet electronic states of benzene using coupled cluster response theory. The polarizabilities have been calculated for the ground state and the 1 1 B 2u , 1 1 B 1u 1 1 E 1u and 2 1 E 1u excited states. The dipole allowed transitions out of these states have also been calculated and discussed in the context of the calculated polarizabilities. Oscillator strengths and the second electronic moments of the charge distributions have been used to characterize and identify qualitative features of the individual states. The performance of coupled cluster singles (CCS), the recently proposed CC2 mod…

ChemistryContext (language use)Electronic structureAtomic and Molecular Physics and OpticsAnalytical ChemistryDipoleCoupled clusterExcited stateSinglet stateAtomic physicsGround stateInstrumentationSpectroscopyBasis setSpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
researchProduct

The Dalton quantum chemistry program system

2013

Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, confi ...

Physics::Computational PhysicsPhysicsNuclear TheoryBiochemistryQuantum chemistryComputer Science ApplicationsComputational MathematicsComputational chemistryAb initio quantum chemistry methodsQuantum mechanicsMolecular electronic structurePhysics::Atomic and Molecular ClustersMaterials ChemistryPhysics::Atomic PhysicsPhysics::Chemical PhysicsPhysical and Theoretical ChemistryWiley Interdisciplinary Reviews: Computational Molecular Science
researchProduct

The Cotton-Mouton effect of Neon and Argon: a benchmark study using highly correlated coupled cluster wave functions

2004

The Cotton-Mouton effect (magnetic field induced linear birefringence) has been studied for neon and argon using state-of-the-art coupled cluster techniques. The coupled cluster singles, doubles and triples (CCSDT) approach has been used to obtain static benchmark results and the CC3 model with an approximate treatment of triple excitations to obtain frequency-dependent results. In the case of neon the effect of excitations beyond triples has also been estimated via coupled cluster calculations including quadruple excitations (CCSDTQ), pentuple excitations (CCSDTQP), etc. up to the full configuration-interaction level. The results obtained for the anisotropy of the hypermagnetizability Delt…

PhysicsArgonGeneral Physics and Astronomychemistry.chemical_elementMagnetic fieldNeonCoupled clusterchemistryExcited statePhysical and Theoretical ChemistryAtomic physicsAnisotropyWave functionCotton–Mouton effect
researchProduct

Accurate Nonlinear Optical Properties for Small Molecules

2006

During the last decade it became possible to calculate by quantum chemical ab initio methods not only static but also frequency-dependent properties with high accuracy. Today, the most important tools for such calculations are coupled cluster response methods in combination with systematic hierarchies of correlation consistent basis sets. Coupled cluster response methods combine a computationally efficient treatment of electron correlation with a qualitatively correct pole structure and frequency dispersion of the response functions. Both are improved systematically within a hierarchy of coupled cluster models. The present contribution reviews recent advances in the highly accurate calculat…

Physicssymbols.namesakeCoupled clusterBasis (linear algebra)Electronic correlationFaraday effectsymbolsAb initioExtrapolationElectronic structureStatistical physicsBasis set
researchProduct

Explicitly Correlated Electrons in Molecules

2011

Basis set superposition errorQuantum chemistry composite methodsChemistryQuantum mechanicsQuantum Monte CarloPotential energy surfaceMoleculeGeneral ChemistryElectronSTO-nG basis setsChemical Reviews
researchProduct