0000000000268148
AUTHOR
Philip H. Elsinga
Synthesis and evaluation in rats of the dopamine D2/3 receptor agonist 18F-AMC20 as a potential radioligand for PET
Dopamine D2/3 receptor (D2/3R) agonist PET tracers are better suited for the imaging of synaptic dopaminergic neurotransmission than D2/3R antagonists and may also offer the opportunity to study in vivo the high-affinity state of D2/3R (D2/3RHigh). With the aim to develop 18F-labeled D2/3R agonists suitable for widespread clinical application, we report here on the synthesis and in vitro and in vivo evaluation of a D2/3R agonist ligand from the aminomethyl chromane (AMC) class-(R)-2-[(4- 18Fluorobenzylamino)methyl]chroman-7-ol (18F-AMC20). Methods: In vitro affinities of AMC20 toward dopaminergic receptor subtypes were measured in membrane homogenates prepared from HEK293 cells expressing h…
Hunting for the high-affinity state of G-protein-coupled receptors with agonist tracers: Theoretical and practical considerations for positron emission tomography imaging.
Abstract The concept of the high‐affinity state postulates that a certain subset of G‐protein‐coupled receptors is primarily responsible for receptor signaling in the living brain. Assessing the abundance of this subset is thus potentially highly relevant for studies concerning the responses of neurotransmission to pharmacological or physiological stimuli and the dysregulation of neurotransmission in neurological or psychiatric disorders. The high‐affinity state is preferentially recognized by agonists in vitro. For this reason, agonist tracers have been developed as tools for the noninvasive imaging of the high‐affinity state with positron emission tomography (PET). This review provides an…
Synthesis and Characterization of a Novel Series of Agonist Compounds as Potential Radiopharmaceuticals for Imaging Dopamine D-2/3 Receptors in Their High-Affinity State
Imaging of dopamine D2/3 receptors (D2/3R) can shed light on the nature of several neuropsychiatric disorders in which dysregulation of D2/3R signaling is involved. Agonist D2/3 tracers for PET/SPECT imaging are considered to be superior to antagonists because they are more sensitive to dopamine concentrations and may selectively label the high-affinity receptor state. Carbon-11-labeled D2/3R agonists have been developed, but these short-lived tracers can be used only in centers with a cyclotron. Here, we report the development of a series of novel D2R agonist compounds based on the 2-aminomethylchromane (AMC) scaffold that provides ample opportunities for the introduction of longer-lived […