0000000000268205

AUTHOR

Vadim Guzey

0000-0002-2393-8507

showing 9 related works from this author

Hard probes in heavy ion collisions at the lhc: pdfs, shadowing and pa collisions

2003

This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions'' from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC''. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discussed are factorization in nuclear collisions, nuclear parton distributions (nPDFs), hard probes as the benchmark tests of factorization in $pA$ collisions at the LHC, and semi-hard probes as observables with potentially large nuclear effects. Also, novel QCD phenomena in $pA$ collisions at the LHC are considered. The importance of the $pA$ program at the LHC is emphasized.

Nuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Nuclear TheoryPhysics::Instrumentation and DetectorsHigh Energy Physics::PhenomenologyFOS: Physical sciencesNuclear ExperimentParticle Physics - Phenomenology
researchProduct

Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all

2016

This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics and, in particular, the focused ten-week program on "Gluons and quark sea a…

Nuclear and High Energy PhysicsParticle physicsNuclear Theorynucl-thhadrons gluons electron-ion colliderFOS: Physical sciencesnucl-ex01 natural sciencesAtomicLinear particle acceleratorgluonsHigh Energy Physics - Experimentlaw.inventionColor-glass condensateNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)White paperHigh Energy Physics - Phenomenology (hep-ph)Particle and Plasma Physicslawquantum chromodynamics0103 physical sciencesNuclear Physics - ExperimentNuclearNuclear Experiment (nucl-ex)010306 general physicsColliderNuclear ExperimentQuantum chromodynamicsPhysics010308 nuclear & particles physicshep-exMolecularelectron-ion colliderParticle acceleratorhep-phNuclear & Particles PhysicsNATURAL SCIENCES. Physics.GluonPRIRODNE ZNANOSTI. Fizika.High Energy Physics - PhenomenologyhadronsElectron-Ion Collider (EIC)Quark–gluon plasma
researchProduct

Nuclear parton distribution functions with uncertainties in a general mass variable flavor number scheme

2020

In this article we obtain a new set of nuclear parton distribution functions (nuclear PDFs) at next-to-leading order and next-to-next-to-leading order accuracy in perturbative QCD. The common nuclear deep-inelastic scattering (DIS) data analyzed in our study are complemented by the available charged-current neutrino DIS data with nuclear targets and data from Drell-Yan cross-section measurements for several nuclear targets. In addition, the most recent DIS data from the Jefferson Lab CLAS and Hall C experiments are also added to our data sample. For these specific datasets, we consider the impact of target mass corrections and higher twist effects which are expected to be important in the r…

Hessian matrixQuantum chromodynamicsPhysicsParticle physicsNuclear TheoryScatteringNuclear TheoryPerturbative QCDFOS: Physical sciencesPartonHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Phenomenologysymbols.namesakeHigh Energy Physics - Experiment (hep-ex)Distribution functionHigh Energy Physics - Phenomenology (hep-ph)symbolsHigh Energy Physics::ExperimentTwistNeutrinoNuclear Experiment
researchProduct

A U.S.-based Electron-Ion Collider

2019

Abstract An Electron-Ion Collider (EIC) in USA is currently discussed as a next-generation facility for high-energy nuclear physics. The main goal of the EIC is to study fundamental questions of Quantum Chromodynamics, which include the origin of the nucleon mass and spin and the three-dimensional structure of the nucleon in terms of quarks and gluons, the emergent properties of dense systems of gluons, and influence of nuclear matter on distributions of quarks and gluons and propagation of color charges through it. The EIC machine designs are aimed at achieving variable center of mass energies of 20 – 100 GeV, upgradable to 150 GeV, high degree of polarization ( 70%) of beams of electrons,…

PhysicsHistory010308 nuclear & particles physicsNuclear TheoryElectronhiukkasfysiikkahiukkaskiihdyttimet114 Physical sciences7. Clean energy01 natural sciencesComputer Science ApplicationsEducationlaw.inventionIonNuclear physicslaw0103 physical sciencesHigh Energy Physics::ExperimentydinfysiikkaNuclear Experiment010306 general physicsColliderJournal of Physics: Conference Series
researchProduct

Constraints on nuclear parton distributions from dijet photoproduction at the LHC

2019

Using QCD calculations of the cross section of inclusive dijet photoproduction in Pb-Pb ultraperipheral collisions in the LHC kinematics as pseudo-data, we study the effect of including these data using the Bayesian reweighting technique on nCTEQ15, nCTEQ15np, and EPPS16 nuclear parton distribution functions (nPDFs). We find that, depending on the assumed error of the pseudo-data, it leads to a significant reduction of the nPDF uncertainties at small values of the momentum fraction $x_A$. Taking the error to be 5\%, the uncertainty of nCTEQ15 and nCTEQ15np nPDFs reduces approximately by a factor of two at $x_A=10^{-3}$. At the same time, the reweighting effect on EPPS16 nPDFs is much smalle…

PB-PB COLLISIONSParticle physicsNuclear TheoryPhysics and Astronomy (miscellaneous)FOS: Physical scienceslcsh:AstrophysicsPartonhiukkasfysiikka114 Physical sciences01 natural sciencesCOLLIDERNuclear Theory (nucl-th)MomentumCross section (physics)High Energy Physics - Phenomenology (hep-ph)lcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityQuantum ChromodynamicsNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentEngineering (miscellaneous)PhysicsQuantum chromodynamicsLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics - Phenomenologynuclear parton distribution functionsDistribution functionlcsh:QC770-798ydinfysiikkaVECTOR-MESONSParametrization
researchProduct

Nuclear-mass dependence of azimuthal beam-helicity and beam-charge asymmetries in deeply virtual Compton scattering

2009

The nuclear-mass dependence of azimuthal cross section asymmetries with respect to charge and longitudinal polarization of the lepton beam is studiedfor hard exclusive electroproduction of real photons. The observed beam-charge and beam-helicity asymmetries are attributed to the interference between the Bethe-Heitler and deeply virtual Compton scattering processes. For various nuclei, the asymmetries are extracted for both coherent and incoherent-enriched regions, which involve different (combinations of) generalized parton distributions. For both regions, the asymmetries are compared to those for a free proton, and no nuclear-mass dependence is found.

Nuclear and High Energy PhysicsParticle physicsPhotonNuclear TheoryHERAFOS: Physical sciencesIMPACT PARAMETER SPACEPartonGENERALIZED PARTON DISTRIBUTIONS; IMPACT PARAMETER SPACE; SPIN; HERA01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)GENERALIZED PARTON DISTRIBUTIONS0103 physical sciencesddc:530Nuclear Experiment010306 general physicsPhysicsElastic scattering010308 nuclear & particles physicsScatteringCompton scatteringHERASPINPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNucleonBeam (structure)
researchProduct

Inclusive and diffractive dijet photoproduction in UPCs at the LHC in NLO QCD

2019

We present a next-to-leading order QCD calculation of inclusive dijet photoproduction in ultraperipheral Pb-Pb collisions at the LHC and show that the results agree very well with various kinematic distributions measured by the ATLAS collaboration. The effect of including these data in nCTEQ or EPPS16 nuclear parton density functions (nPDFs) is then studied using the Bayesian reweighting technique. For an assumed total error of 5\% on the final data, its inclusion would lead to a significant reduction of the nPDF uncertainties of up to a factor of two at small values of the parton momentum fraction. As an outlook, we discuss future analyes of diffractive nPDFs, which are so far completely u…

Particle physicsNuclear Theorynucl-thFOS: Physical sciencesPartonnucl-ex114 Physical sciencesTotal errorHigh Energy Physics - ExperimentMomentumNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Atlas (anatomy)medicineNuclear Physics - ExperimentNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentParticle Physics - PhenomenologyPhysicsQuantum chromodynamicsLarge Hadron Colliderhep-exhep-phHigh Energy Physics - Phenomenologymedicine.anatomical_structureNuclear Physics - TheoryHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Nucleon dissociation and incoherent J/ψ photoproduction on nuclei in ion ultraperipheral collisions at the CERN Large Hadron Collider

2019

Using the general notion of cross section fluctuations in hadron-nucleus scattering at high energies, we derive an expression for the cross section of incoherent J / ψ photoproduction on heavy nuclei d σ γ A → J / ψ Y / d t , which includes both elastic d σ γ p → J / ψ p / d t and proton-dissociation d σ γ p → J / ψ Y / d t photoproduction on target nucleons. We find that, with good accuracy, d σ γ A → J / ψ Y / d t can be expressed as a product of the sum of the d σ γ p → J / ψ p / d t and d σ γ p → J / ψ Y / d t cross sections, which have been measured at HERA, and the common nuclear shadowing factor, which is calculated using the leading twist nuclear shadowing model. Our prediction for …

photonuclear reactionsphoton lepton and quark productionQCD in nuclear reactionshiukkasfysiikkaydinfysiikkarelativistic heavy-ion collisions
researchProduct

Predictions for exclusive $\Upsilon$ photoproduction in ultraperipheral ${\rm Pb}+{\rm Pb}$ collisions at the LHC at next-to-leading order in perturb…

2023

We present predictions for the rapidity-differential cross sections of exclusive $\Upsilon$ photoproduction in ultraperipheral collisions (UPCs) of lead ions at the Large Hadron Collider (LHC). We work in the framework of collinear factorization at next-to-leading order (NLO) in perturbative QCD, modeling the generalized parton distributions (GPDs) through the Shuvaev transform of nuclear parton distribution functions (nPDFs). While the effects due to the GPD modeling turn out to be small, the direct NLO predictions still carry significant nPDF-originating uncertainties and depend strongly on the choices of the factorization and renormalization scales. To tame the scale dependence and to ac…

High Energy Physics - Phenomenology
researchProduct