0000000000268830

AUTHOR

J. Mark Hipfner

showing 2 related works from this author

Ecological insights from three decades of animal movement tracking across a changing Arctic

2020

Ecological “big data” Human activities are rapidly altering the natural world. Nowhere is this more evident, perhaps, than in the Arctic, yet this region remains one of the most remote and difficult to study. Researchers have increasingly relied on animal tracking data in these regions to understand individual species' responses, but if we want to understand larger-scale change, we need to integrate our understanding across species. Davidson et al. introduce an open-source data archive that currently hosts more than 15 million location data points across 96 species and use it to show distinct climate change responses across species. Such ecological “big data” can lead to a wider understandi…

0106 biological sciencesEcology (disciplines)Acclimatization[SDV]Life Sciences [q-bio]PopulationPopulationEcological Parameter MonitoringClimate change010603 evolutionary biology01 natural sciences010605 ornithologyOnderz. Form. D.ddc:570Life ScienceAnimals14. Life underwaterNo themeeducationComputingMilieux_MISCELLANEOUSeducation.field_of_studyMultidisciplinaryEcologyPhenologyArchivesArctic RegionsData discoveryEcological Parameter MonitoringPlan_S-Compliant_NO15. Life on landSubarctic climateGeographyArctic13. Climate actioninternational[SDE]Environmental SciencesWIASDierecologieAnimal MigrationAnimal Ecology
researchProduct

Inter-oceanic variation in patterns of host-associated divergence in a seabird ectoparasite

2011

Aim Parasites with global distributions and wide host spectra provide excellent models for exploring the factors that drive parasite diversification. Here, we tested the relative force of host and geography in shaping population structure of a widely distributed and common ectoparasite of colonial seabirds, the tick Ixodes uriae. Location Two natural geographic replicates of the system: numerous seabird colonies of the North Pacific and North Atlantic Ocean basins. Methods Using eight microsatellite markers and tick samples from a suite of multi-specific seabird colonies, we examined tick population structure in the North Pacific and compare patterns of diversity and structure to those in t…

0106 biological sciences0303 health scienceseducation.field_of_studyEcologybiologyEcologyPopulationTickIxodes uriaebiology.organism_classification010603 evolutionary biology01 natural sciencesGene flow03 medical and health sciencesPhylogeographybiology.animalparasitic diseasesGenetic structureBiological dispersalSeabirdeducationEcology Evolution Behavior and Systematics030304 developmental biologyJournal of Biogeography
researchProduct