0000000000269350
AUTHOR
L. Moser-jauslin
Darboux Linearization and Isochronous Centers with a Rational First Integral
Abstract In this paper we study isochronous centers of polynomial systems. It is known that a center is isochronous if and only if it is linearizable. We introduce the notion of Darboux linearizability of a center and give an effective criterion for verifying Darboux linearizability. If a center is Darboux linearizable, the method produces a linearizing change of coordinates. Most of the known polynomial isochronous centers are Darboux linearizable. Moreover, using this criterion we find a new two-parameter family of cubic isochronous centers and give the linearizing changes of coordinates for centers belonging to that family. We also determine all Hamiltonian cubic systems which are Darbou…
$$O_2(\mathbb {C})$$O2(C)-Vector Bundles and Equivariant Real Circle Actions
The main goal of this article is to give an expository overview of some new results on real circle actions on affine four-space and their relation to previous results on \(O_2(\mathbb {C})\)-equivariant vector bundles. In Moser-Jauslin (Infinite families of inequivalent real circle actions on affine four-space, 2019, [13]), we described infinite families of equivariant real circle actions on affine four-space. In the present note, we will describe how these examples were constructed, and some consequences of these results.