0000000000269557

AUTHOR

Veronica Vinciotti

0000-0002-2625-7977

Extending graphical models for applications: on covariates, missingness and normality

The authors of the paper “Bayesian Graphical Models for Modern Biological Applications” have put forward an important framework for making graphical models more useful in applied settings. In this discussion paper, we give a number of suggestions for making this framework even more suitable for practical scenarios. Firstly, we show that an alternative and simplified definition of covariate might make the framework more manageable in high-dimensional settings. Secondly, we point out that the inclusion of missing variables is important for practical data analysis. Finally, we comment on the effect that the Gaussianity assumption has in identifying the underlying conditional independence graph…

research product

The Joint Censored Gaussian Graphical Lasso Model

The Gaussian graphical model is one of the most used tools for inferring genetic networks. Nowadays, the data are often collected from different sources or under different biological conditions, resulting in heterogeneous datasets that exhibit a dependency structure that varies across groups. The complex structure of these data is typically recovered using regularized inferential procedures that use two penalties, one that encourages sparsity within each graph and the other that encourages common structures among the different groups. To this date, these approaches have not been developed for handling the case of censored data. However, these data are often generated by gene expression tech…

research product

cglasso: An R Package for Conditional Graphical Lasso Inference with Censored and Missing Values

Sparse graphical models have revolutionized multivariate inference. With the advent of high-dimensional multivariate data in many applied fields, these methods are able to detect a much lower-dimensional structure, often represented via a sparse conditional independence graph. There have been numerous extensions of such methods in the past decade. Many practical applications have additional covariates or suffer from missing or censored data. Despite the development of these extensions of sparse inference methods for graphical models, there have been so far no implementations for, e.g., conditional graphical models. Here we present the general-purpose package cglasso for estimating sparse co…

research product

L1-Penalized Censored Gaussian Graphical Model

Graphical lasso is one of the most used estimators for inferring genetic networks. Despite its diffusion, there are several fields in applied research where the limits of detection of modern measurement technologies make the use of this estimator theoretically unfounded, even when the assumption of a multivariate Gaussian distribution is satisfied. Typical examples are data generated by polymerase chain reactions and flow cytometer. The combination of censoring and high-dimensionality make inference of the underlying genetic networks from these data very challenging. In this article, we propose an $\ell_1$-penalized Gaussian graphical model for censored data and derive two EM-like algorithm…

research product

An extension of the censored gaussian lasso estimator

The conditional glasso is one of the most used estimators for inferring genetic networks. Despite its diffusion, there are several fields in applied research where the limits of detection of modern measurement technologies make the use of this estimator theoretically unfounded, even when the assumption of a multivariate Gaussian distribution is satisfied. In this paper we propose an extension to censored data.

research product

The conditional censored graphical lasso estimator

© 2020, Springer Science+Business Media, LLC, part of Springer Nature. In many applied fields, such as genomics, different types of data are collected on the same system, and it is not uncommon that some of these datasets are subject to censoring as a result of the measurement technologies used, such as data generated by polymerase chain reactions and flow cytometer. When the overall objective is that of network inference, at possibly different levels of a system, information coming from different sources and/or different steps of the analysis can be integrated into one model with the use of conditional graphical models. In this paper, we develop a doubly penalized inferential procedure for…

research product

Covariate adjusted censored gaussian lasso estimator

The covariate adjusted glasso is one of the most used estimators for in- ferring genetic networks. Despite its diffusion, there are several fields in applied research where the limits of detection of modern measurement technologies make the use of this estimator theoretically unfounded, even when the assumption of a multivariate Gaussian distribution is satisfied. In this paper we propose an extension to censored data.

research product

Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks.

Abstract Factorial Gaussian graphical Models (fGGMs) have recently been proposed for inferring dynamic gene regulatory networks from genomic high-throughput data. In the search for true regulatory relationships amongst the vast space of possible networks, these models allow the imposition of certain restrictions on the dynamic nature of these relationships, such as Markov dependencies of low order – some entries of the precision matrix are a priori zeros – or equal dependency strengths across time lags – some entries of the precision matrix are assumed to be equal. The precision matrix is then estimated by l 1-penalized maximum likelihood, imposing a further constraint on the absolute value…

research product