3 He/4He Signature of Magmatic Fluids from Telica (Nicaragua) and Baru (Panama) Volcanoes, Central American Volcanic Arc
Constraining the magmatic 3He/4He signature of fluids degassed from a magmatic system is crucial for making inferences on its mantle source. This is especially important in arc volcanism, where variations in the composition of the wedge potentially induced by slab sediment fluids must be distinguished from the effects of magma differentiation, degassing, and crustal contamination. The study of fluid inclusions (FIs) trapped in minerals of volcanic rocks is becoming an increasingly used methodology in geochemical studies that integrates the classical study of volcanic and geothermal fluids. Here, we report on the first noble gas (He, Ne, Ar) concentrations and isotopic ratios of FI in olivin…
Melt inclusions track melt evolution and degassing of Etnean magmas in the last 15 ka
We present major elements compositions and volatiles contents of olivine-hosted melt inclusions from Etna volcano (Italy), which extend the existing database with the aim of interpreting the chemical variability of Etnean magmas over the last 15 ka. Olivine phenocrysts were selected from the most primitive Fall Stratified (FS) eruptive products of picritic composition (Mg# = 67–70, Fo 89–91 ), the Mt. Spagnolo eccentric lavas (Mg# = 52–64, Fo 82–88 ) and among the more recent 2002–2013 eruptive products (Mg# = 33–53, Fo 68–83 ). Crystal fractionation and degassing processes were modeled at temperatures of 1050–1300 °C, pressures <500 MPa, and oxygen fugacity between 1 and 2 log units abo…
Carbon isotope composition of CO2-rich inclusions in cumulate-forming mantle minerals from Stromboli volcano (Italy)
We report on measurements of concentration and carbon isotope composition (δ13CCO2) of CO2 trapped in fluid inclusions of olivine and clinopyroxene crystals separated from San Bartolo ultramafic cumulate Xenoliths (SBX) formed at mantle depth (i.e., beneath a shallow Moho supposed to be at 14.8 km). These cumulates, erupted about 2 ka ago at Stromboli volcano (Italy), have been already investigated by Martelli et al. (2014) mainly for Sr-Nd isotopes and for their noble gases geochemistry. The concentration of CO2 varies of one order of magnitude from 3.8·10− 8 mol g− 1 to 4.8·10− 7 mol g− 1, with δ13C values between − 2.8‰ and − 1.5‰ vs V-PDB. These values overlap the range of measurements …
Chlorine isotope composition of volcanic rocks and gases at Stromboli volcano (Aeolian Islands, Italy): Inferences on magmatic degassing prior to 2014 eruption
Abstract Among the magmatic volatiles, chlorine (Cl) is degassed at shallow depths offering the opportunity to investigate the behavior of magmatic degassing close to the surface, and the possible occurrence of chemical and isotopic fractionation related to gas/melt partitioning. However, it is still unclear if the isotopic composition of Cl (δ 37 Cl) can be used as a proxy of magmatic degassing. In this work, we investigate the concentrations of chlorine and sulfur, and the Cl isotope composition of rocks and plume gases collected at Stromboli volcano, Aeolian Islands, Italy. This volcano was chosen because it is characterized by persistent eruptive activity (i.e., Strombolian explosions) …
Geochemistry and isotope composition (Sr, Pb, δ66Zn) of Vulcano fumaroles (Aeolian Islands, Italy)
We present and discuss temperatures, major and trace element gas geochemistry, radiogenic isotopes (Pb, Sr) and the first Zn isotope data of fumarole condensates and altered rocks from the Vulcano fumarolic field. The fumaroles of the La Fossa cone, sampled on 5th May 2015, have temperatures ranging between 233 and 427 °C. They plot compositionally on the mixing trend between the magmatic and hydrothermal end-members defined by previous studies, but are strongly displaced towards the hydrothermal component. Correlations of radiogenic (Sr, Pb) and stable isotopes of Zn with δ13CCO2 and several trace elements of the fumarolic acid condensates support mixing between the above mentioned distinc…
Gas Emissions From the Western Aleutians Volcanic Arc
The Aleutian Arc is remote and highly active volcanically. Its 4,000 km extent from mainland Alaska to Russia’s Kamchatka peninsula hosts over 140 volcanic centers of which about 50 have erupted in historic times. We present data of volcanic gas samples and gas emission measurements obtained during an expedition to the western-most segment of the arc in September 2015 in order to extend the sparse knowledge on volatile emissions from this remote but volcanically active region. Some of the volcanoes investigated here have not been sampled for gases before this writing. Our data show that all volcanoes host high-temperature magmatic-hydrothermal systems and have gas discharges typical of volc…
Geochemistry of Noble Gases and CO2 in Fluid Inclusions From Lithospheric Mantle Beneath Wilcza Góra (Lower Silesia, Southwest Poland)
Knowledge of the products originating from the subcontinental lithospheric mantle (SCLM) is crucial for constraining the geochemical features and evolution of the mantle. This study investigated the chemistry and isotope composition (noble gases and CO2 ) of fluid inclusions (FI) from selected mantle xenoliths originating from Wilcza Góra (Lower Silesia, southwest Poland), with the aim of integrating their petrography and mineral chemistry. Mantle xenoliths are mostly harzburgites and sometimes bear amphiboles, and are brought to the surface by intraplate alkaline basalts that erupted outside the north-easternmost part of the Eger (Ohře) Rift in Lower Silesia. Olivine (Ol) is classified int…
New insights into the magmatic-hydrothermal system and volatile budget of Lastarria volcano, Chile: Integrated results from the 2014 IAVCEI CCVG 12th Volcanic Gas Workshop
Recent geophysical evidence for large-scale regional crustal inflation and localized crustal magma intrusion has made Lastarria volcano (northern Chile) the target of numerous geological, geophysical, and geochemical studies. The chemical composition of volcanic gases sampled during discrete campaigns from Lastarria volcano indicated a well-developed hydrothermal system from direct fumarole samples in A.D. 2006, 2008, and 2009, and shallow magma degassing using measurements from in situ plume sampling techniques in 2012. It is unclear if the differences in measured gas compositions and resulting interpretations were due to artifacts of the different sampling methods employed, short-term exc…