0000000000269628
AUTHOR
R. J. Smith
T2K neutrino flux prediction
The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations using an off-axismuon neutrino beam with a peak energy of about 0.6 GeV that originates at the Japan Proton Accelerator Research Complex accelerator facility. Interactions of the neutrinos are observed at near detectors placed at 280 m from the production target and at the far detector-Super-Kamiokande-located 295 km away. The flux prediction is an essential part of the successful prediction of neutrino interaction rates at the T2K detectors and is an important input to T2K neutrino oscillation and cross section measurements. A FLUKA and GEANT3-based simulation models the physical processes involved in the neutrino producti…
Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector
Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The …
Observation of Electron Neutrino Appearance in a Muon Neutrino Beam
The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3$\sigma$ when compared to 4.92 $\pm$ 0.55 expected background events. In the PMNS mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles $\theta_{12}$, $\theta_{23}$, $\theta_{13}$, a mass difference $\Delta m^2_{32}$ and a CP violating phase $\delta_{\mathrm{CP}}$. In this neutrino oscillation scenario, assuming $…
Precise measurement of the neutrino mixing parameter θ23 from muon neutrino disappearance in an off-axis beam
New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter theta_{23}. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57 x 10^{20} protons on target, T2K has fit the energy-dependent nu_mu oscillation probability to determine oscillation parameters. Marginalizing over the values of other oscillation parameters yields sin^2 (theta_{23}) = 0.514 +0.055/-0.056 (0.511 +- 0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Delta m^2_{32} = (2.51 +- 0.10) x 10^{-3} eV^2/c^4 (inverted hierarchy: Delta m^2_{13} = (2.48 +- 0.10) …