0000000000269850

AUTHOR

I.v. Anikin

Single Spin Asymmetry Parameter from Deeply Virtual Compton Scattering of Hadrons up to Twist-3 accuracy: I. Pion case

The study of deeply virtual Compton scattering has shown that electromagnetic gauge invariance requires, to leading order, not only twist two but additional twist three contributions. We apply this analysis and, using the Ellis-Furmanski-Petronzio factorization scheme, compute the single (electron) spin asymmetry arising in the collision of longitudinally polarized electrons with hadrons up to twist 3 accuracy. In order to simplify the kinematics we restrict the actual calculation to pions in the chiral limit. The process is described in terms of the generalized parton distribution functions which we obtain within a bag model framework.

research product

Nonforward parton distributions of the pion within an effective single instanton approximation

We develop a relativistic quark model for pion structure, which incorporates the non-trivial structure of the vacuum of Quantum Chromodynamics as modelled by instantons. Pions are boundstates of quarks and the strong quark-pion vertex is determined from an instanton induced effective lagrangian. The interaction of the constituents of the pion with the external electromagnetic field is introduced in gauge invariant form. The parameters of the model, i.e., effective instanton radius and constituent quark masses, are obtained from the vacuum expectation values of the lowest dimensional quark and gluon operators and the low-energy observables of the pion. We apply the formalism to the calculati…

research product