Understanding seismic path biases and magmatic activity at Mount St Helens volcano before its 2004 eruption
SUMMARY In volcanoes, topography, shallow heterogeneity and even shallow morphology can substantially modify seismic coda signals. Coda waves are an essential tool to monitor eruption dynamics and model volcanic structures jointly and independently from velocity anomalies: it is thus fundamental to test their spatial sensitivity to seismic path effects. Here, we apply the Multiple Lapse Time Window Analysis (MLTWA) to measure the relative importance of scattering attenuation vs absorption at Mount St Helens volcano before its 2004 eruption. The results show the characteristic dominance of scattering attenuation in volcanoes at lower frequencies (3–6 Hz), while absorption is the primary atte…