0000000000272764

AUTHOR

F. Carfi' Pavia

showing 4 related works from this author

Potential roles of extracellular vesicles in brain cell-to-cell communication

Potential roles of extracellular vesicles in brain cell-to-cell communication Extracellular vesicles (EVs) are released into thè extracellular space from both cancer and normal brain cells, and are probably able to modify thè phenotypic properties of receiving cells1. EVs released from astrocytes and neurons contain FGF2 and VEGF2'3 and induce a 'blood-brain barrier' (BBB) phenotype in cultured brain capillary endothelial cells (BCECs, unpublished results), On thè other hand, EVs from G26/24 oligodendroglioma induce apoptosis in neurons and astrocytes4-5. These effects are probably due to Fas Ligand and TRAIL, present in G26/24 vesicles4-5. Moreover, G26/24 EVs contain extracellular matrix …

astrocytePLLA scaffoldextracellular vesicle
researchProduct

PLLA Scaffold via TIPS for Bone Tissue Engineering

2016

Tissue engineering offers a promising new approach to repair bone fractures, fractures that do not heal, and fractures due to bone tumors. In this work, two different approaches were tested in order to obtain Poly-L- Lactic Acid (PLLA) porous scaffolds via Thermally Induced Phase Separation (TIPS) for bone tissue engineering application. First, the possibility to produce a composite material, by incorporating Hydroxyapatite (HA) particles in a Poly-L-lactic acid (PLLA) matrix was investigated. Two PLLA/HA weight ratios (70/30 and 50/50) were tested. The results showed that the presence of HA does not influence the phase separation process, i.e. the composite scaffolds microstructure is simi…

lcsh:Computer engineering. Computer hardwareTissue EngineeringPhase separationlcsh:TP155-156lcsh:TK7885-7895Gradientlcsh:Chemical engineeringPLLAHydroxyapatite
researchProduct

Hydroxyapatite/Chitosan/Collagen coatings through galvanic coupling

In this work, the attention was focused on Hydroxyapatite/ Chitosan/Collagen composite as biocoatings for application in orthopaedic devices. Hydroxyapatite was selected for its osteoconductivity due to its chemical structure similar to bones. Collagen has the same function since 90-95% of bone matrix is constituted of collagen fibers. Furthermore, chitosan are largely used yet in medical field (e.g. antibacterial agent or drug deliver) and in this work were used to create a synergic interaction with hydroxyapatite and collagen to increase the strength and bioactivity of coating. Coatings were fabricated by galvanic deposition process that has different advantages an it does not require ext…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/23 - Chimica Fisica ApplicataSettore BIO/10 - BiochimicaSettore ING-IND/34 - Bioingegneria IndustrialeGalvanic deposition hydroxyapatite 304 stainless steel orthopedic implants chitosan collagen corrosion cytocompatibility
researchProduct

Fabrication of Chitosan-Silver Nanoparticles composite coatings by galvanic deposition for orthopaedic implants

Coating chitosan AgNPs Corrosion Orthopedic implantSettore ING-IND/23 - Chimica Fisica Applicata
researchProduct