0000000000273441

AUTHOR

A. Kievsky

showing 2 related works from this author

Microscopic study of He2-SF6 trimers

2003

The He2-SF6 trimers, in their different He isotopic combinations, are studied in the framework of both the correlated Jastrow approach and the correlated hyperspherical harmonics (CHH) expansion method. The energetics and structure of the He-SF6 dimers are analyzed, and the existence of a characteristic rotational band in the excitation spectrum is discussed, as well as the isotopic differences. The binding energies and the spatial properties of the trimers, in their ground and lowest lying excited states, obtained by the Jastrow ansatz are in excellent agreement with the results of the converged CHH expansion. The introduction of the He-He correlation makes all trimers bound by largely sup…

Condensed Matter::Quantum GasesLiquid heliumMicroscòpia de materialsGasos rarsPhysics::Atomic and Molecular ClustersFísicaMicroclustersMicroscopy of materialsMicroagregatsHeli líquidRare gases
researchProduct

Measurement of double-polarization asymmetries in the quasi-elastic Process

2018

We report on a precise measurement of double-polarization asymmetries in electron-induced breakup of He3 proceeding to pd and ppn final states, performed in quasi-elastic kinematics at Q2=0.25(GeV/c)2 for missing momenta up to 250MeV/c. These observables represent highly sensitive tools to investigate the electromagnetic and spin structure of He3 and the relative importance of two- and three-body effects involved in the breakup reaction dynamics. The measured asymmetries cannot be satisfactorily reproduced by state-of-the-art calculations of He3 unless their three-body segment is adjusted, indicating that the spin-dependent part of the nuclear interaction governing the three-body breakup pr…

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsNuclear TheoryObservableKinematicsSpin structurePolarization (waves)Breakup01 natural sciencesp-processNuclear interactionNuclear physicsReaction dynamics0103 physical sciencesNuclear Experiment010306 general physicsPhysics Letters
researchProduct