0000000000273676
AUTHOR
Georg Raming
Mathematical modelling of the industrial growth of large silicon crystals by CZ and FZ process
The present paper gives an overview of the complex mathematical modelling of industrial Czochralski (CZ) and floating‐zone (FZ) processes for the growth of large silicon single crystals from melt. Extensive numerical investigations of turbulent Si‐melt flows in large diameter CZ crucibles, global thermal calculations in growth facilities and analysis of the influence of various electromagnetic fields on CZ process are presented. For FZ process, a complex system of coupled 2D and 3D mathematical models is presented to show the possibilities of modelling from the calculation of the molten zone shape till the resistivity distribution in the grown crystal. A special developed program code is pr…
Prediction of the growth interface shape in industrial 300mm CZ Si crystal growth
Abstract A model approach for a modification of the effective heat conductivity in the turbulent melt flow simulation for 28″ Si CZ crucibles is presented, which helped to overcome deficiencies in the growth interface shape prediction for industrial 300 mm Si CZ growth. The model has been incorporated into a CZ simulation tool based on the simulation software codes FEMAG for the global heat transfer and CFD-ACE for the turbulent melt flow simulation. The model predictions are compared to results from 300 mm Si CZ growth experiments with 200 kg charge weight in 28″ crucibles in a growth parameter range covered by standard industrial processes. The model is an engineering approach. Neverthele…