0000000000273864

AUTHOR

Asger Halkier

showing 3 related works from this author

CCSDT calculations of molecular equilibrium geometries

1997

Abstract CCSDT equilibrium geometries of CO, CH2, F2, HF, H2O and N2 have been calculated using the correlation-consistent cc-pVXZ basis sets. Similar calculations have been performed for SCF, CCSD and CCSD(T). In general, bond lengths decrease when improving the basis set and increase when improving the N-electron treatment. CCSD(T) provides an excellent approximation to CCSDT for bond lengths as the largest difference between CCSDT and CCSD(T) is 0.06 pm. At the CCSDT/cc-pVQZ level, basis set deficiencies, neglect of higher-order excitations, and incomplete treatment of core-correlation all give rise to errors of a few tenths of a pm, but to a large extent, these errors cancel. The CCSDT/…

Bond lengthBasis (linear algebra)Computational chemistryChemistryGeneral Physics and AstronomyPhysical and Theoretical ChemistryMolecular physicsBasis setChemical Physics Letters
researchProduct

The Dalton quantum chemistry program system

2013

Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, confi ...

Physics::Computational PhysicsPhysicsNuclear TheoryBiochemistryQuantum chemistryComputer Science ApplicationsComputational MathematicsComputational chemistryAb initio quantum chemistry methodsQuantum mechanicsMolecular electronic structurePhysics::Atomic and Molecular ClustersMaterials ChemistryPhysics::Atomic PhysicsPhysics::Chemical PhysicsPhysical and Theoretical ChemistryWiley Interdisciplinary Reviews: Computational Molecular Science
researchProduct

Large-scale calculations of excitation energies in coupled cluster theory: The singlet excited states of benzene

1996

Algorithms for calculating singlet excitation energies in the coupled cluster singles and doubles (CCSD) model are discussed and an implementation of an atomic-integral direct algorithm is presented. Each excitation energy is calculated at a cost comparable to that of the CCSD ground-state energy. Singlet excitation energies are calculated for benzene using up to 432 basis functions. Basis-set effects of the order of 0.2 eV are observed when the basis is increased from augmented polarized valence double-zeta (aug-cc-pVDZ) to augmented polarized valence triple-zeta (aug-cc-pVTZ) quality. The correlation problem is examined by performing calculations in the hierarchy of coupled cluster models…

General Physics and AstronomyElectronic structurePhysics and Astronomy (all)Physics::Atomic and Molecular ClustersSinglet statePhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]Calculation MethodsValence (chemistry)TripletsElectronic correlationChemistryBenzeneExcited StatesConfiguration interactionUNESCO::FÍSICA::Química físicaConfiguration InteractionCoupled clusterElectronic StructureExcited stateElectron CorrelationBenzene ; Excited States ; Calculation Methods ; Algorithms ; Triplets ; Electronic Structure ; Configuration Interaction ; Correlation Functions ; Electron CorrelationAtomic physicsCorrelation FunctionsExcitationAlgorithms
researchProduct