0000000000273880

AUTHOR

Laurent Vila

0000-0002-1171-2391

showing 3 related works from this author

Spin relaxation in Cu and Al spin conduits

2014

We study the spin relaxation in Al and Cu spin conduits embedded in non-local spin valve nanostructures. Measuring the key spin transport properties, we determine the spin and charge diffusion constants as well as the spin flip time. By varying the temperature, we find that the maximum of the non-local spin resistance change occurs at finite temperatures with a clear difference between Al and Cu. In particular, we find that the maximum of the non-local spin signal in Al is less pronounced and occurs at lower temperatures compared to Cu suggesting that the self-passivating Al surface plays a role. Having fabricated devices with both materials in identical processes, we can attribute the diff…

Spin polarizationCondensed matter physicsChemistrySpin valveSurfaces and InterfacesZero field splittingCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSpin iceSpin waveMaterials ChemistryCondensed Matter::Strongly Correlated ElectronsSpin-flipElectrical and Electronic EngineeringQuantum spin liquidSpin-½physica status solidi (a)
researchProduct

Geometrical control of pure spin current induced domain wall depinning.

2017

[EN] We investigate the pure spin-current assisted depinning of magnetic domain walls in half ring based Py/Al lateral spin valve structures. Our optimized geometry incorporating a patterned notch in the detector electrode, directly below the Al spin conduit, provides a tailored pinning potential for a transverse domain wall and allows for a precise control over the magnetization configuration and as a result the domain wall pinning. Due to the patterned notch, we are able to study the depinning field as a function of the applied external field for certain applied current densities and observe a clear asymmetry for the two opposite field directions. Micromagnetic simulations show that this …

Pure spin currentField (physics)Magnetic domainGeometrical constrictions in nanostructuresSpin valve02 engineering and technology01 natural sciencesMagnetization0103 physical sciencesComputational physicsGeneral Materials Science[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physicsComputingMilieux_MISCELLANEOUSSpin-½PhysicsCondensed matter physicsMagnetismSpin-transfer torque021001 nanoscience & nanotechnologyCondensed Matter PhysicsDomain wall motionDomain wall (magnetism)Spin Hall effect0210 nano-technologyJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct

Effective field analysis using the full angular spin-orbit torque magnetometry dependence

2017

Spin-orbit torques promise ultra-efficient magnetization switching used for advanced devices based on emergent quasi-particles such as domain walls and skyrmions. Recently, the spin structure dynamics, materials and systems with tailored spin-orbit torques are being developed. A method, which allows one to detect the acting torques in a given system as a function of the magnetization direction is the torque-magnetometry method based on a higher harmonics analysis of the anomalous Hall-effect. Here we show that the effective fields acting on magnetic domain walls that govern the efficiency of their dynamics require a sophisticated analysis taking into account the full angular dependence of t…

PhysicsCondensed matter physicsMagnetic domainCondensed Matter - Mesoscale and Nanoscale PhysicsMagnetometerDynamics (mechanics)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslaw.inventionMagnetizationlawHarmonics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)QuasiparticleTorqueAstrophysics::Earth and Planetary Astrophysics[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physics0210 nano-technologyComputingMilieux_MISCELLANEOUSSpin-½Physical Review B
researchProduct