A comparative molecular dynamics-phase-field modeling approach to brittle fracture
Abstract In this work, a novel comparative method for highly brittle materials such as aragonite crystals is proposed, which provides an efficient and accurate in-sight understanding for multi-scale fracture modeling. In particular, physically-motivated molecular dynamics (MD) simulations are performed to model quasi-static brittle crack propagation on the nano-scale and followingly compared to macroscopic modeling of fracture using the phase-field modeling (PFM) technique. A link between the two modeling schemes is later proposed by deriving PFM parameters from the MD atomistic simulations. Thus, in this combined approach, MD simulations provide a more realistic meaning and physical estima…
Coupled Multi-Field Continuum Methods for Porous Media Fracture
The focus of the present contribution is on the numerical modelling of hydraulic fracture in fluid-saturated heterogeneous materials, which can be carried out on a macroscopic scale using extended continuum porous media theories. This accounts for the crack nucleation and propagation, deformation of the solid matrix and change in the flow of the interstitial fluid. In particular, fluid-saturated porous materials basically represent volumetrically interacting solid-fluid aggregates, which are modelled using the Theory of Porous Media. The hydraulic- or tension-induced fracture occurs in the solid matrix and is simulated using a diffusive phase-field modelling approach. This way of fracture t…