0000000000273959

AUTHOR

Sandeep P. Patil

0000-0003-3980-6995

A comparative molecular dynamics-phase-field modeling approach to brittle fracture

Abstract In this work, a novel comparative method for highly brittle materials such as aragonite crystals is proposed, which provides an efficient and accurate in-sight understanding for multi-scale fracture modeling. In particular, physically-motivated molecular dynamics (MD) simulations are performed to model quasi-static brittle crack propagation on the nano-scale and followingly compared to macroscopic modeling of fracture using the phase-field modeling (PFM) technique. A link between the two modeling schemes is later proposed by deriving PFM parameters from the MD atomistic simulations. Thus, in this combined approach, MD simulations provide a more realistic meaning and physical estima…

research product

Force Distribution Analysis of Mechanochemically Reactive Dimethylcyclobutene

Internal molecular forces can guide chemical reactions, yet are not straightforwardly accessible within a quantum mechanical description of the reacting molecules. Here, we present a force-matching force distribution analysis (FM-FDA) to analyze internal forces in molecules. We simulated the ring opening of trans-3,4-dimethylcyclobutene (tDCB) with on-the-fly semiempirical molecular dynamics. The self-consistent density functional tight binding (SCC-DFTB) method accurately described the force-dependent ring-opening kinetics of tDCB, showing quantitative agreement with both experimental and computational data at higher levels. Mechanical force was applied in two different ways, namely, exter…

research product