0000000000274025

AUTHOR

Kristina D. Launey

showing 4 related works from this author

Isospin symmetry in B(E2) values: Coulomb excitation study of Mg21

2019

The Tz=−32 nucleus 21Mg has been studied by Coulomb excitation on 196Pt and 110Pd targets. A 205.6(1)-keV γ-ray transition resulting from the Coulomb excitation of the 52+ ground state to the first excited 12+ state in 21Mg was observed for the first time. Coulomb excitation cross-section measurements with both targets and a measurement of the half-life of the 12+ state yield an adopted value of B(E2;52+→12+)=13.3(4) W.u. A new excited state at 1672(1) keV with tentative 92+ assignment was also identified in 21Mg. This work demonstrates a large difference in the B(E2;52+→12+) value between T=32, A=21 mirror nuclei. The difference is investigated in the shell-model framework employing both i…

Physics010308 nuclear & particles physicsNuclear structureAb initioCoulomb excitation01 natural sciencesSymmetry (physics)Excited stateIsospin0103 physical sciencesMirror nucleiAtomic physics010306 general physicsGround statePhysical Review C
researchProduct

Benchmark calculations of electromagnetic sum rules with a symmetry-adapted basis and hyperspherical harmonics

2020

We demonstrate the ability to calculate electromagnetic sum rules with the \textit{ab initio} symmetry-adapted no-core shell model. By implementing the Lanczos algorithm, we compute non-energy weighted, energy weighted, and inverse energy weighted sum rules for electric monopole, dipole, and quadrupole transitions in $^4$He using realistic interactions. We benchmark the results with the hyperspherical harmonics method and show agreement within $2\sigma$, where the uncertainties are estimated from the use of the many-body technique. We investigate the dependence of the results on three different interactions, including chiral potentials, and we report on the $^4$He electric dipole polarizabi…

PhysicsNuclear Theory010308 nuclear & particles physicsLorentz transformationLanczos algorithmInverseFOS: Physical sciences01 natural sciencesNuclear Theory (nucl-th)Dipolesymbols.namesakePolarizabilityHarmonicsQuantum mechanics0103 physical sciencesQuadrupolesymbols010306 general physicsEnergy (signal processing)
researchProduct

White paper: from bound states to the continuum

2020

This white paper reports on the discussions of the 2018 Facility for Rare Isotope Beams Theory Alliance (FRIB-TA) topical program ‘From bound states to the continuum: Connecting bound state calculations with scattering and reaction theory’. One of the biggest and most important frontiers in nuclear theory today is to construct better and stronger bridges between bound state calculations and calculations in the continuum, especially scattering and reaction theory, as well as teasing out the influence of the continuum on states near threshold. This is particularly challenging as many-body structure calculations typically use a bound state basis, while reaction calculations more commonly utili…

Nuclear and High Energy Physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Structure (category theory)nucleus: structure functionFew-body systems[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesMany-body problemTheoretical physicsFew-body systems0103 physical sciencesBound stateReactionsNuclear structure010306 general physicsPhysicsBasis (linear algebra)010308 nuclear & particles physicsContinuum (topology)ScatteringscatteringNuclear structurePhysique atomique et nucléairebound statefew-body problemmany-body problem
researchProduct

Testing microscopically derived descriptions of nuclear collectivity: Coulomb excitation of Mg-22

2018

Many-body nuclear theory utilizing microscopic or chiral potentials has developed to the point that collectivity might be dealt with in an {\it ab initio} framework without the use of effective charges; for example with the proper evolution of operators, or alternatively, through the use of an appropriate and manageable subset of particle-hole excitations. We present a precise determination of $E2$ strength in $^{22}$Mg and its mirror $^{22}$Ne by Coulomb excitation, allowing for rigorous comparisons with theory. No-core symplectic shell-model calculations were performed and agree with the new $B(E2)$ values while in-medium similarity-renormalization-group calculations consistently underpre…

Nuclear and High Energy Physics3106IsoscalarCollectivityCoulomb excitationAb initioFOS: Physical sciences22NeCoulomb excitationAstronomy & Astrophysics01 natural sciencesPhysics Particles & FieldsMg-22Quantum mechanics0103 physical sciencesSensitivity (control systems)collectivityNuclear Experiment (nucl-ex)010306 general physicsNuclear theoryNuclear ExperimentPhysicsScience & TechnologyIsovectorta114010308 nuclear & particles physicsOperator (physics)Physics22MgNe-22lcsh:QC1-999Physics NuclearSTATESPhysical SciencesAb initiolcsh:PhysicsSymplectic geometry
researchProduct