0000000000275134

AUTHOR

Emmanuele Ambrosi

0000-0002-1834-6144

showing 1 related works from this author

Physical–chemical properties of biogenic selenium nanostructures produced by stenotrophomonas maltophilia SeITE02 and ochrobactrum sp. MPV1

2018

Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1 were isolated from the rhizosphere soil of the selenium-hyperaccumulator legume Astragalus bisulcatus and waste material from a dumping site for roasted pyrites, respectively. Here, these bacterial strains were studied as cell factories to generate selenium-nanostructures (SeNS) under metabolically controlled growth conditions. Thus, a defined medium (DM) containing either glucose or pyruvate as carbon and energy source along with selenite (SeO23−) was tested to evaluate bacterial growth, oxyanion bioconversion and changes occurring in SeNS features with respect to those generated by these strains grown on rich media. Transmissi…

0301 basic medicineMicrobiology (medical)biogenic nanomaterialsOchrobactrum sp. MPV1030106 microbiologyPopulationlcsh:QR1-502NanorodBacterial growthSettore BIO/19 - Microbiologia GeneraleMicrobiologyFluorescence spectroscopylcsh:Microbiology03 medical and health sciencesSeleniumNanoparticleExtracellulareducationPhotoluminescenceOriginal Researcheducation.field_of_studyStrain (chemistry)ChemistryFluorescenceStenotrophomonas maltophilia SeITE02Chemically defined medium030104 developmental biologybiogenic nanomaterials selenium selenite nanoparticles nanorods Stenotrophomonas maltophilia SeITE02 Ochrobactrum sp. MPV1 photoluminescenceSeleniteBiophysicsnanoparticlesBiogenic nanomaterialEnergy sourcenanorods
researchProduct