0000000000275653

AUTHOR

Daniel Nievergelt

New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland

Abstract The rate and magnitude of temperature variability at the transition from the Last Glacial Maximum into the early Holocene represents a natural analog to current and predicted climate change. A limited number of high-resolution proxy archives, however, challenges our understanding of environmental conditions during this period. Here, we present combined dendrochronological and radiocarbon evidence from 253 newly discovered subfossil pine stumps from Zurich, Switzerland. The individual trees reveal ages of 41–506 years and were growing between the Allerod and Preboreal (∼13′900–11′300 cal BP). Together with previously collected pines from this region, this world's best preserved Late…

research product

Orbital forcing of tree-ring data

Based on an analysis of maximum latewood density data from northern Scandinavia, along with published dendrochronological records, this study finds evidence that previous tree-ring-reliant reconstructions of large-scale near-surface air temperature underestimated long-term pre-industrial warmth during Medieval and Roman times. Solar insolation changes, resulting from long-term oscillations of orbital configurations1, are an important driver of Holocene climate2,3. The forcing is substantial over the past 2,000 years, up to four times as large as the 1.6 W m−2 net anthropogenic forcing since 1750 (ref. 4), but the trend varies considerably over time, space and with season5. Using numerous hi…

research product

Timber Logging in Central Siberia is the Main Source for Recent Arctic Driftwood

Abstract Recent findings indicated spruce from North America and larch from eastern Siberia to be the dominating tree species of Arctic driftwood throughout the Holocene. However, changes in source region forest and river characteristics, as well as ocean current dynamics and sea ice extent likely influence its spatiotemporal composition. Here, we present 2556 driftwood samples from Greenland, Iceland, Svalbard, and the Faroe Islands. A total of 498 out of 969 Pinus sylvestris ring width series were cross-dated at the catchment level against a network of Eurasian boreal reference chronologies. The central Siberian Yenisei and Angara Rivers account for 91% of all dated pines, with their oute…

research product

Scientific Merits and Analytical Challenges of Tree‐Ring Densitometry

X-ray microdensitometry on annually resolved tree-ring samples has gained an exceptional position in last-millennium paleoclimatology through the maximum latewood density (MXD) parameter, but also increasingly through other density parameters. For 50 years, X-ray based measurement techniques have been the de facto standard. However, studies report offsets in the mean levels for MXD measurements derived from different laboratories, indicating challenges of accuracy and precision. Moreover, reflected visible light-based techniques are becoming increasingly popular, and wood anatomical techniques are emerging as a potentially powerful pathway to extract density information at the highest resol…

research product

Illuminating Intcal During the Younger Dryas

As the worldwide standard for radiocarbon (14C) dating over the past ca. 50,000 years, the International Calibration Curve (IntCal) is continuously improving towards higher resolution and replication. Tree-ring-based 14C measurements provide absolute dating throughout most of the Holocene, although high-precision data are limited for the Younger Dryas interval and farther back in time. Here, we describe the dendrochronological characteristics of 1448 new 14C dates, between ~11,950 and 13,160 cal BP, from 13 pines that were growing in Switzerland. Significantly enhancing the ongoing IntCal update (IntCal20), this Late Glacial (LG) compilation contains more annually precise 14C dates than any…

research product

Introducing anatomical techniques to subfossil wood

Abstract Successful cross-dating of subfossil wood, ideally in combination with precise information on germination and dieback, requires the accurate detection of tree-ring width (TRW) boundaries along continuous measurement tracks from pith to bark. However, wood decay and the mechanical deformation of cells often challenge the dendrochronological analysis and subsequent paleoclimatic and environmental interpretations. Here, we show that wood anatomical techniques can improve the assessment of heavily degraded and/or deformed material. We apply state-of-the-art sample preparation, thin sectioning and double-staining to a unique collection of Late Glacial pines that were growing ∼13,000 yea…

research product

Tree-Ring Amplification of the Early Nineteenth-Century Summer Cooling in Central Europe

Abstract Annually resolved and absolutely dated tree-ring chronologies are the most important proxy archives to reconstruct climate variability over centuries to millennia. However, the suitability of tree-ring chronologies to reflect the “true” spectral properties of past changes in temperature and hydroclimate has recently been debated. At issue is the accurate quantification of temperature differences between early nineteenth-century cooling and recent warming. In this regard, central Europe (CEU) offers the unique opportunity to compare evidence from instrumental measurements, paleomodel simulations, and proxy reconstructions covering both the exceptionally hot summer of 2003 and the ye…

research product

Causes and consequences of past and projected Scandinavian summer temperatures, 500-2100 AD

Tree rings dominate millennium-long temperature reconstructions and many records originate from Scandinavia, an area for which the relative roles of external forcing and internal variation on climatic changes are, however, not yet fully understood. Here we compile 1,179 series of maximum latewood density measurements from 25 conifer sites in northern Scandinavia, establish a suite of 36 subset chronologies, and analyse their climate signal. A new reconstruction for the 1483–2006 period correlates at 0.80 with June–August temperatures back to 1860. Summer cooling during the early 17th century and peak warming in the 1930s translate into a decadal amplitude of 2.9°C, which agrees with existin…

research product

Annual 14C Tree-Ring Data Around 400 AD: Mid- and High-Latitude Records

ABSTRACTTwo tree-ring series, one from a high-latitude pine tree (located in northern Scandinavia) and one from a mid-latitude oak tree (located in eastern Germany) were analyzed for radiocarbon (14C) at annual resolution. The new records cover the calendar date ranges 290–460 AD and 382–486 AD, respectively, overlapping by 79 yr. The series show similar trends as IntCal13. However, some significant deviations around 400 AD are present with lower Δ14C (higher 14C ages). An average offset between the two new series and IntCal13 of about 20 years in conventional 14C age is observed. A latitudinal 14C offset between the tree sites in central and northern Europe, as would be expected due to the…

research product

Towards a dendrochronologically refined date of the Laacher See eruption around 13,000 years ago

Highlights • Previous age estimates of the Laacher See Eruptions (LSE) around 12,900 years are still diverging and imprecise. • The combination of dendrochronology, wood anatomy, and 14C measurements holds the potential to establish a precise LSE date. • An absolute calendric date of the LSE would improve the synchronization of European Late Glacial to Holocene archives. Abstract The precise date of the Laacher See eruption (LSE), central Europe’s largest Late Pleistocene volcanic event that occurred around 13,000 years ago, is still unknown. Here, we outline the potential of combined high-resolution dendrochronological, wood anatomical and radiocarbon (14C) measurements, to refine the age …

research product

Development of tree-ring maximum latewood density chronologies for the western Tien Shan Mountains, China: Influence of detrending method and climate response

a b s t r a c t Three tree-ring maximum latewood density chronologies were developed from high elevation Picea schrenkiana sites in the western Tien Shan Mountains using different detrending methods. The new chro- nologies extend back to the early 16th and late 17th centuries, and contain significant late spring and summer temperature signals, respectively. An assessment of varying detrending methods and band-pass filtering the chronologies revealed only slightly differing low frequency trends retained in the maximum latewood densities. The distance between sampling sites and the varying seasonality of limiting climatic factors are identified as key drivers affecting the correlation among t…

research product