0000000000275707

AUTHOR

Katalin Karikó

A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis.

Precision therapy for immune tolerance Autoimmune diseases, such as multiple sclerosis (MS), result from a breach of immunological self-tolerance and tissue damage by autoreactive T lymphocytes. Current treatments can cause systemic immune suppression and side effects such as increased risk of infections. Krienke et al. designed a messenger RNA vaccine strategy that lacks adjuvant activity and delivers MS autoantigens into lymphoid dendritic cells. This approach expands a distinct type of antigen-specific effector regulatory T cell that suppresses autoreactivity against targeted autoantigens and promotes bystander suppression of autoreactive T cells against other myelin-specific autoantigen…

research product

BNT162b2 induces SARS-CoV-2-neutralising antibodies and T cells in humans

BNT162b2, a lipid nanoparticle (LNP) formulated nucleoside-modified messenger RNA (mRNA) encoding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) stabilized in the prefusion conformation, has demonstrated 95% efficacy to prevent coronavirus disease 2019 (COVID-19). Recently, we reported preliminary BNT162b2 safety and antibody response data from an ongoing placebo-controlled, observer-blinded phase 1/2 vaccine trial1. We present here antibody and T cell responses from a second, non-randomized open-label phase 1/2 trial in healthy adults, 19-55 years of age, after BNT162b2 prime/boost vaccination at 1 to 30 µg dose levels. BNT162b2 elicited strong antibody …

research product

Abstract LB-130: Combinatorial treatment with intratumoral cytokine mRNAs results in high frequency of tumor rejection and development of anti-tumor immunity across a range of preclinical cancer models

Abstract Cancer immunotherapy localized to the tumor microenvironment holds great potential to promote innate and adaptive immune responses against tumors, while avoiding toxicities related to systemic administration of immuno-modulatory therapeutics. Current strategies for tumor-targeted, gene-based delivery of immune therapies face limitations in the clinic due to suboptimal target expression, anti-vector immunity, potential for unwanted genomic rearrangements and other off target effects. We developed a highly potent synthetic mRNA-based platform for in vivo transfection and sustained intratumoral expression of immuno-modulatory molecules that is capable of inducing immunity to tumor spe…

research product

Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models

Local immunotherapy ideally stimulates immune responses against tumors while avoiding toxicities associated with systemic administration. Current strategies for tumor-targeted, gene-based delivery, however, are limited by adverse effects such as off-targeting or antivector immunity. We investigated the intratumoral administration of saline-formulated messenger (m)RNA encoding four cytokines that were identified as mediators of tumor regression across different tumor models: interleukin-12 (IL-12) single chain, interferon-α (IFN-α), granulocyte-macrophage colony-stimulating factor, and IL-15 sushi. Effective antitumor activity of these cytokines relied on multiple immune cell populations and…

research product

mRNA-based therapeutics — developing a new class of drugs

In vitro transcribed (IVT) mRNA has recently come into focus as a potential new drug class to deliver genetic information. Such synthetic mRNA can be engineered to transiently express proteins by structurally resembling natural mRNA. Advances in addressing the inherent challenges of this drug class, particularly related to controlling the translational efficacy and immunogenicity of the IVTmRNA, provide the basis for a broad range of potential applications. mRNA-based cancer immunotherapies and infectious disease vaccines have entered clinical development. Meanwhile, emerging novel approaches include in vivo delivery of IVT mRNA to replace or supplement proteins, IVT mRNA-based generation o…

research product

Elimination of large tumors in mice by mRNA-encoded bispecific antibodies.

The potential of bispecific T cell-engaging antibodies is hindered by manufacturing challenges and short serum half-life. We circumvented these limitations by treating mice with in vitro-transcribed pharmacologically optimized, nucleoside-modified mRNA encoding the antibody. We achieved sustained endogenous synthesis of the antibody, which eliminated advanced tumors as effectively as the corresponding purified bispecific antibody. Because manufacturing of pharmaceutical mRNA is fast, this approach could accelerate the clinical development of novel bispecific antibodies.

research product