Comparison of the P-integral with Burkill's integrals and some applications to trigonometric series
It is proved that the $P_r$-integral [9] which recovers a function from its derivative defined in the space $L^r$, 1 ≤r<∞, is properly included in Burkill’s trigonometric CP-and SCP-integrals. As an application to harmonic analysis, a de La Vallée-Poussin-type theorem for the $P_r$-integral is obtained: convergence nearly everywhere of a trigonometric series to a $P_r$-integrable function f implies that this series is the Pr-Fourier series of f.