A Quantitative Analysis of Metrics on Rn with Almost Constant Positive Scalar Curvature, with Applications to Fast Diffusion Flows
We prove a quantitative structure theorem for metrics on $\mathbf{R}^n$ that are conformal to the flat metric, have almost constant positive scalar curvature, and cannot concentrate more than one bubble. As an application of our result, we show a quantitative rate of convergence in relative entropy for a fast diffusion equation in $\mathbf{R}^n$ related to the Yamabe flow.
Rigidity and sharp stability estimates for hypersurfaces with constant and almost-constant nonlocal mean curvature
We prove that the boundary of a (not necessarily connected) bounded smooth set with constant nonlocal mean curvature is a sphere. More generally, and in contrast with what happens in the classical case, we show that the Lipschitz constant of the nonlocal mean curvature of such a boundary controls its $C^2$-distance from a single sphere. The corresponding stability inequality is obtained with a sharp decay rate.