0000000000275959

AUTHOR

Anna Wójtowicz

showing 10 related works from this author

Impact of triclosan on apoptotic processes in neuronal cells

2015

Pharmacologychemistry.chemical_compoundchemistryApoptosisGeneral MedicineTriclosanCell biologyPharmacological Reports
researchProduct

Impact of Elastin-Derived Peptide VGVAPG on Matrix Metalloprotease-2 and -9 and the Tissue Inhibitor of Metalloproteinase-1, -2, -3 and -4 mRNA Expre…

2018

Degradation products of elastin, i.e. elastin-derived peptides (EDPs), are involved in various physiological and pathological processes. EDPs are detectable in cerebrospinal fluid in healthy people and in patients after ischemic stroke. However, to date, no studies concerning the role of EDP in the nervous system were conducted. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) play important roles during the repair phases of cerebral ischemia, particularly during angiogenesis and reestablishment of cerebral blood flow. Therefore, the aim of this study was to investigate the impact of the specific elastin-derived peptide VGVAPG on Mmp-2, -9 and Timp-1, -2,…

0301 basic medicineTIMPsAngiogenesisGene ExpressionApoptosisReceptors Cell SurfaceMatrix metalloproteinaseToxicology03 medical and health sciencesMice0302 clinical medicineGlial cellsAnimalsRNA MessengerCells CulturedCerebral CortexGene knockdownbiologyL-Lactate DehydrogenaseMMP-2ChemistryCaspase 3General NeuroscienceTissue Inhibitor of MetalloproteinasesTissue inhibitor of metalloproteinasebeta-GalactosidaseIn vitroMatrix MetalloproteinasesCell biologyElastin-derived peptides030104 developmental biologyApoptosisVGVAPGbiology.proteinOriginal ArticleMMP-9ElastinNeurogliaOligopeptides030217 neurology & neurosurgeryFetal bovine serumNeurotoxicity research
researchProduct

Triclosan-Evoked Neurotoxicity Involves NMDAR Subunits with the Specific Role of GluN2A in Caspase-3-Dependent Apoptosis

2018

Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitising products. A number of studies have shown the presence of TCS in different human tissues such as blood, adipose tissue, the liver, brain as well as in breast milk and urine. N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that are widely expressed in the central nervous system and which play key roles in excitatory synaptic transmission. There is, however, no data on the involvement of NMDAR subunits in the apoptotic and neurotoxic effects of TCS. Our experiments are the first to show that TCS used at environmentally relevant concentrations evoked NMDA-dependent effe…

0301 basic medicineProgrammed cell deathGluN1Protein subunitNeurotoxinsNeuroscience (miscellaneous)Glutamic AcidCaspase 3ApoptosisReceptors N-Methyl-D-AspartateArticle03 medical and health sciencesCellular and Molecular NeuroscienceMice0302 clinical medicinemedicineAnimalsGene SilencingRNA MessengerReceptorNeuronsL-Lactate DehydrogenaseChemistryCaspase 3fungiNeurotoxicityROSTransfectionmedicine.diseaseTriclosanCell biologyGluN2BGluN2AProtein Subunits030104 developmental biologyNeurologyNMDAApoptosisNMDA receptorFemale030217 neurology & neurosurgeryMolecular Neurobiology
researchProduct

Triclosan induces Fas receptor-dependent apoptosis in mouse neocortical neurons in vitro

2014

Triclosan (TCS) is a commonly used antimicrobial agent in personal care and sanitizing products, as well as in household items. Numerous studies have demonstrated the presence of TCS in various human tissues. Several studies have reported the accumulation of TCS in fish and human brain tissue. The aim of the present study was to investigate the effect of TCS on apoptosis in mouse neocortical neurons after 7 days of culture in vitro following 3, 6 and 24 h of exposure. To explore the mechanism underlying the effects of TCS in neurons, we studied the activation and protein expression of the Fas receptor (FasR) and caspase- 8, caspase-9 and caspase-3, as well as DNA fragmentation in TCS-treate…

Time FactorsExtrinsic apoptotic signaling pathwayApoptosisNeocortexDNA fragmentation.DNA FragmentationCaspase 8caspase-8FasRMicePregnancyAnimalsfas ReceptorFADDEnzyme InhibitorsCells CulturedNeuronsDose-Response Relationship DrugL-Lactate DehydrogenasebiologyGeneral NeurosciencefungiEmbryo MammalianStaurosporineFas receptorApoptotic bodyTriclosanIn vitroCell biologyBiochemistryApoptosisCaspasesbiology.proteinFatty Acid Synthesis InhibitorsDNA fragmentationFemaleNeuroscience
researchProduct

The Action of Di-(2-Ethylhexyl) Phthalate (DEHP) in Mouse Cerebral Cells Involves an Impairment in Aryl Hydrocarbon Receptor (AhR) Signaling

2018

Di-(2-ethylhexyl) phthalate (DEHP) is used as a plasticizer in various plastic compounds, such as polyvinyl chloride (PVC), and products including baby toys, packaging films and sheets, medical tubing, and blood storage bags. Epidemiological data suggest that phthalates increase the risk of the nervous system disorders; however, the impact of DEHP on the brain cells and the mechanisms of its action have not been clarified. The aim of the present study was to investigate the effects of DEHP on production of reactive oxygen species (ROS) and aryl hydrocarbon receptor (AhR), as well as Cyp1a1 and Cyp1b1 mRNA and protein expression in primary mouse cortical neurons and glial cells in the in vit…

0301 basic medicineNervous systemendocrine systemCYP1B1Gene ExpressionNeocortexToxicologyMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineDiethylhexyl PhthalateGliaCytochrome P-450 CYP1A1medicineAnimalsCyp1a1RNA MessengerCells Culturedchemistry.chemical_classificationNeuronsReactive oxygen speciesMessenger RNADose-Response Relationship DrugbiologyDEHPChemistryGeneral NeuroscienceAhRPhthalateROSrespiratory systemAryl hydrocarbon receptorIn vitroCell biology030104 developmental biologymedicine.anatomical_structureReceptors Aryl HydrocarbonCytochrome P-450 CYP1B1biology.proteinOriginal ArticleSignal transductionReactive Oxygen SpeciesNeuroglia030217 neurology & neurosurgerySignal TransductionNeurotoxicity Research
researchProduct

Dibutyl Phthalate (DBP)-Induced Apoptosis and Neurotoxicity are Mediated via the Aryl Hydrocarbon Receptor (AhR) but not by Estrogen Receptor Alpha (…

2016

Dibutyl phthalate (di-n-butyl phthalate, DBP) is one of the most commonly used phthalate esters. DBP is widely used as a plasticizer in a variety of household industries and consumer products. Because phthalates are not chemically bound to products, they can easily leak out to enter the environment. DBP can pass through the placental and blood–brain barriers due to its chemical structure, but little is known about its mechanism of action in neuronal cells. This study demonstrated the toxic and apoptotic effects of DBP in mouse neocortical neurons in primary cultures. DBP stimulated caspase-3 and LDH activities as well as ROS formation in a concentration (10 nM–100 µM) and time-dependent (3–…

0301 basic medicineTime Factorsgenetic structuresPPARγPeroxisome proliferator-activated receptorApoptosis010501 environmental sciencesToxicology01 natural sciencesDBPMicechemistry.chemical_compoundERβReceptorCells CulturedERαCerebral CortexNeuronschemistry.chemical_classificationbiologyCaspase 3General NeurosciencePhthalateDibutyl PhthalatePhthalateOriginal ArticleSignal transductioncirculatory and respiratory physiologymedicine.medical_specialtyCell SurvivalDibutyl phthalateNeuroscience(all)03 medical and health sciencesInternal medicinemedicineAnimalsEstrogen Receptor betaRNA Messengercardiovascular diseasesEstrogen receptor beta0105 earth and related environmental sciencesDose-Response Relationship DrugAhREstrogen Receptor alphaNeuronAryl hydrocarbon receptorPPAR gamma030104 developmental biologyEndocrinologyReceptors Aryl Hydrocarbonchemistrybiology.proteinReactive Oxygen SpeciesEstrogen receptor alphaNeurotoxicity Research
researchProduct

TBBPA causes neurotoxic and the apoptotic responses in cultured mouse hippocampal neurons in vitro

2015

Abstract Background Tetrabromobisphenol A (TBBPA) is a brominated flame retardant widely used in a variety of commercial and household products. TBBPA can become bioaccumulated in human body fluids, and also in different brain regions. The aim of the present study was to determine the viability and apoptosis of cultured mouse hippocampal neurons in vitro after exposure to TBBPA. Additionally, we examined the involvement of ROS generation in the effect of TBBPA. Methods Primary hippocampal neuron cultures were prepared from Swiss mouse embryos on day 17/18 of gestation. The cultures were treated with TBBPA at concentrations ranging from 1 nM to 100 μM for 30 min or 3, 6 or 24 h. To study apo…

Polybrominated BiphenylsApoptosis010501 environmental sciencesHippocampal formationBiology01 natural sciencesHippocampus03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineLactate dehydrogenaseAnimalsCells Cultured0105 earth and related environmental sciencesFlame RetardantsPharmacologyNeuronsDose-Response Relationship DrugGeneral MedicineApoptotic bodyMolecular biologyIn vitrochemistryApoptosisEnvironmental chemistryBrominated flame retardantTetrabromobisphenol A030217 neurology & neurosurgeryIntracellularPharmacological Reports
researchProduct

Tetrabromobisphenol A (TBBPA)-stimulated reactive oxygen species (ROS) production in cell-free model using the 2′,7′-dichlorodihydrofluorescein diace…

2016

t Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant, applied in a variety of commercial and household products, mainly electronic ones. Since the production of reactive oxygen species (ROS) is considered one of the principal cytotoxicity mechanisms, numerous studies undertake that aspect of TBBPA’s mechanism of action. The present study verifies if the fluorogenic substrate 2′,7′- dichlorodihydrofluorescein diacetate (H2DCFDA) should be used to detect ROS production induced by TBBPA. To determine the ability of TBBPA alone to stimulate the conversion of H2DCFDA to its fluorescent product 2’, 7’- dichlorofluorescein (DCF), we used a cell-free model. In the experiments…

0301 basic medicineDPPHHealth Toxicology and MutagenesisPolybrominated BiphenylsCell-free system03 medical and health scienceschemistry.chemical_compound0302 clinical medicineH2DCFDAFree radicalDichlorofluoresceinEnvironmental ChemistryOrganic chemistryCytotoxicitychemistry.chemical_classificationReactive oxygen speciesCell-Free SystemROSFree Radical ScavengersGeneral MedicineFluoresceinsFree radical scavengerPollutionTBBPA030104 developmental biologychemistryBrominated flame retardantTetrabromobisphenol AReactive Oxygen Species030217 neurology & neurosurgeryResearch ArticleDPPHNuclear chemistryEnvironmental Science and Pollution Research
researchProduct

PPAR-γ Agonist GW1929 But Not Antagonist GW9662 Reduces TBBPA-Induced Neurotoxicity in Primary Neocortical Cells

2013

Tetrabromobisphenol A (2,2-bis(4-hydroxy-3,5-dibromophenyl)propane; TBBPA) is a widely used brominated flame retardant. TBBPA induces neuronal damage, but the mechanism by which this occurs is largely unknown. We studied the possible involvement of peroxisome proliferator-activated receptor gamma (PPAR-γ) in TBBPA-induced apoptosis and toxicity in mouse primary neuronal cell cultures. TBBPA enhanced both, caspase-3 activity and lactate dehydrogenase (LDH) release in neocortical cells after 6 and 24 h of exposition. These data were supported at the cellular level with Hoechst 33342 staining. Immunoblot analyses showed that, compared with control cells, 10 μM TBBPA decreased the expression of…

PPAR-γTime FactorsNeuroscience(all)Polybrominated BiphenylsPeroxisome proliferator-activated receptorGW1929Caspase 3ApoptosisNeocortexPharmacologyBiologyToxicologyNeuroprotectionBenzophenonesMicemedicineNeurotoxicityAnimalsAnilidesReceptorCells Culturedchemistry.chemical_classificationNeuronsDose-Response Relationship DrugL-Lactate DehydrogenaseCaspase 3General NeuroscienceNeurotoxicityApoptotic bodymedicine.diseasePPAR gammaTBBPANeuroprotective AgentschemistryCell cultureApoptosisTyrosineNeurotoxicity SyndromesOriginal ArticleCentral Nervous System AgentsNeurotoxicity Research
researchProduct

Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons.

2016

Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitizing products, such as soaps, toothpastes, and hair products. A number of studies have revealed the presence of TCS in human tissues, such as fat, liver and brain, in addition to blood and breast milk. The aim of the present study was to investigate the impact of TCS on AhR and Cyp1a1/Cyp1b1 signaling in mouse neocortical neurons in primary cultures. In addition to the use of selective ligands and siRNAs, expression levels of mRNA and proteins as well as caspase-3 activity, reactive oxygen species (ROS) formation, and lactate dehydrogenase (LDH) release have been measured. We also studied the in…

0301 basic medicinemedicine.medical_specialtySmall interfering RNAStimulationCaspase 3ApoptosisNeocortex010501 environmental sciencesBiology01 natural sciencesBiochemistry03 medical and health sciencesMiceInternal medicinemedicineCytochrome P-450 CYP1A1Cyp1a1AnimalsRNA MessengerCells Cultured0105 earth and related environmental sciencesGeneral Environmental Sciencechemistry.chemical_classificationNeuronsReactive oxygen speciesCaspase 3fungiAhRNeurotoxicityCyp1b1respiratory systemNeuronmedicine.diseaseAryl hydrocarbon receptorTriclosanCell biology030104 developmental biologyEndocrinologyMechanism of actionchemistryReceptors Aryl HydrocarbonApoptosisCytochrome P-450 CYP1B1biology.proteinAnti-Infective Agents LocalFemalemedicine.symptomReactive Oxygen SpeciesEnvironmental research
researchProduct