0000000000276016
AUTHOR
J. A. Bonet
FULLY RESOLVED QUIET-SUN MAGNETIC FLUX TUBE OBSERVED WITH THE SUNRISE/IMAX INSTRUMENT
Until today, the small size of magnetic elements in quiet Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope Sunrise with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical s…
Supersonic Magnetic Flows in the Quiet Sun
In this contribution we describe some recent observations of high-speed magnetized flows in the quiet Sun granulation. These observations were carried out with the Imaging Magnetograph eXperiment (IMaX) onboard the stratospheric balloon {\sc Sunrise}, and possess an unprecedented spatial resolution and temporal cadence. These flows were identified as highly shifted circular polarization (Stokes $V$) signals. We estimate the LOS velocity responsible for these shifts to be larger than 6 km s$^{-1}$, and therefore we refer to them as {\it supersonic magnetic flows}. The average lifetime of the detected events is 81.3 s and they occupy an average area of about 23\,000 km$^2$. Most of the events…
Center-to-limb variation of the area covered by magnetic bright points in the quiet Sun
CONTEXT: The quiet Sun magnetic fields produce ubiquitous bright points (BPs) that cover a significant fraction of the solar surface. Their contribution to the total solar irradiance (TSI) is so-far unknown. AIMS: To measure the center-to-limb variation (CLV) of the fraction of solar surface covered by quiet Sun magnetic bright points. The fraction is referred to as 'fraction of covered surface', or FCS. METHODS: Counting of the area covered by BPs in G-band images obtained at various heliocentric angles with the 1-m Swedish Solar Telescope on La Palma. Through restoration, the images are close to the diffraction limit of the instrument (~0.1 arcsec). RESULTS: The FCS is largest at disk cen…
Surface waves in solar granulation observed with {\sc Sunrise}
Solar oscillations are expected to be excited by turbulent flows in the intergranular lanes near the solar surface. Time series recorded by the IMaX instrument aboard the {\sc Sunrise} observatory reveal solar oscillations at high resolution, which allow studying the properties of oscillations with short wavelengths. We analyze two times series with synchronous recordings of Doppler velocity and continuum intensity images with durations of 32\thinspace min and 23\thinspace min, resp., recorded close to the disk center of the Sun to study the propagation and excitation of solar acoustic oscillations. In the Doppler velocity data, both the standing acoustic waves and the short-lived, high-deg…
The polarimetric and helioseismic imager on solar orbiter
This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, as well as hosting the potential of a rich return in further science. SO/PHI measures the Zeeman effect and the Doppler shift in the FeI 617.3nm spectral line. To this end, the instrument carries out narrow-band imaging…
Supersonic Magnetic Upflows in Granular Cells Observed with Sunrise/IMaX
Using the IMaX instrument on-board the Sunrise stratospheric balloon-telescope we have detected extremely shifted polarization signals around the Fe I 5250.217 {\AA} spectral line within granules in the solar photosphere. We interpret the velocities associated with these events as corresponding to supersonic and magnetic upflows. In addition, they are also related to the appearance of opposite polarities and highly inclined magnetic fields. This suggests that they are produced by the reconnection of emerging magnetic loops through granular upflows. The events occupy an average area of 0.046 arcsec$^2$ and last for about 80 seconds, with larger events having longer lifetimes. These supersoni…
Transverse component of the magnetic field in the solar photosphere observed by Sunrise
We present the first observations of the transverse component of photospheric magnetic field acquired by the imaging magnetograph Sunrise/IMaX. Using an automated detection method, we obtain statistical properties of 4536 features with significant linear polarization signal. Their rate of occurrence is 1-2 orders of magnitude larger than values reported by previous studies. We show that these features have no characteristic size or lifetime. They appear preferentially at granule boundaries with most of them being caught in downflow lanes at some point in their evolution. Only a small percentage are entirely and constantly embedded in upflows (16%) or downflows (8%).
Magnetic field emergence in mesogranular-sized exploding granules observed with SUNRISE/IMaX data
We report on magnetic field emergences covering significant areas of exploding granules. The balloon-borne mission SUNRISE provided high spatial and temporal resolution images of the solar photosphere. Continuum images, longitudinal and transverse magnetic field maps and Dopplergrams obtained by IMaX onboard SUNRISE are analyzed by Local Correlation Traking (LCT), divergence calculation and time slices, Stokes inversions and numerical simulations are also employed. We characterize two mesogranular-scale exploding granules where $\sim$ 10$^{18}$ Mx of magnetic flux emerges. The emergence of weak unipolar longitudinal fields ($\sim$100 G) start with a single visible magnetic polarity, occupyi…
Convectively driven vortex flows in the Sun
We have discovered small whirlpools in the Sun, with a size similar to the terrestrial hurricanes (<~0.5 Mm). The theory of solar convection predicts them, but they had remained elusive so far. The vortex flows are created at the downdrafts where the plasma returns to the solar interior after cooling down, and we detect them because some magnetic bright points (BPs) follow a logarithmic spiral in their way to be engulfed by a downdraft. Our disk center observations show 0.009 vortexes per Mm^2, with a lifetime of the order of 5 min, and with no preferred sense of rotation. They are not evenly spread out over the surface, but they seem to trace the supergranulation and the mesogranulation. T…
SUNRISE/IMaX observations of convectively driven vortex flows in the Sun
We characterize the observational properties of the convectively driven vortex flows recently discovered on the quiet Sun, using magnetograms, Dopplergrams and images obtained with the 1-m balloon-borne Sunrise telescope. By visual inspection of time series, we find some 3.1e-3 vortices/(Mm^2 min), which is a factor of 1.7 larger than previous estimates. The mean duration of the individual events turns out to be 7.9 min, with a standard deviation of 3.2 min. In addition, we find several events appearing at the same locations along the duration of the time series (31.6 min). Such recurrent vortices show up in the proper motion flow field map averaged over the time series. The typical vertica…