0000000000276402
AUTHOR
Pooria Farahani
Theoretical study of the dark photochemistry of 1,3-butadiene via the chemiexcitation of Dewar dioxetane.
Excited-state chemistry is usually ascribed to photo-induced processes, such as fluorescence, phosphorescence, and photochemistry, or to bio-and chemiluminescence, in which light emission originates from a chemical reaction. A third class of excited-state chemistry is, however, possible. It corresponds to the photochemical phenomena produced by chemienergizing certain chemical groups without light - chemiexcitation. By studying Dewar dioxetane, which can be viewed as the combination of 1,2-dioxetane and 1,3-butadiene, we show here how the photo-isomerization channel of 1,3-butadiene can be reached at a later stage after the thermal decomposition of the dioxetane moiety. Multi-reference mult…
Mechanism and cis/trans Selectivity of Vinylogous Nazarov-type [6π] Photocyclizations
Vinylogous Nazarov-type cyclizations yield seven-membered rings from butadienyl vinyl ketones via a photochemical [6π] photocyclization followed by subsequent isomerization steps. The mechanism of this recently developed method was investigated using unrestricted DFT, SF-TDDFT, and CASSCF/NEVPT2 calculations, suggesting three different pathways that lead either to pure trans, pure cis, or mixed cis/trans configured products. Singlet biradicals or zwitterions occur as intermediates. The computational results are supported by deuterium-labeling experiments.
A two-scale approach to electron correlation in multiconfigurational perturbation theory.
We present a new approach for the calculation of dynamic electron correlation effects in large molecular systems using multiconfigurational second-order perturbation theory (CASPT2). The method is restricted to cases where partitioning of the molecular system into an active site and an environment is meaningful. Only dynamic correlation effects derived from orbitals extending over the active site are included at the CASPT2 level of theory, whereas the correlation effects of the environment are retrieved at lower computational costs. For sufficiently large systems, the small errors introduced by this approximation are contrasted by the substantial savings in both storage and computational de…
Cover Feature: Molecular Basis of the Chemiluminescence Mechanism of Luminol (Chem. Eur. J. 20/2019)
Revisiting the Nonadiabatic Process in 1,2-Dioxetane.
Determining the ground and excited-state decomposition mechanisms of 1,2-dioxetane is essential to understand the chemiluminescence and bioluminescence phenomena. Several experimental and theoretical studies has been performed in the past without reaching a converged description. The reason is in part associated with the complex nonadiabatic process taking place along the reaction. The present study is an extension of a previous work (De Vico, L.; Liu, Y.-J.; Krogh, J. W.; Lindh, R. J. Phys. Chem. A 2007, 111, 8013-8019) in which a two-step mechanism was established for the chemiluminescence involving asynchronous O-O' and C-C' bond dissociations. New high-level multistate multi configurati…
Molecular Basis of the Chemiluminescence Mechanism of Luminol
Light emission from luminol is probably one of the most popular chemiluminescence reactions due to its use in forensic science, and has recently displayed promising applications for the treatment of cancer in deep tissues. The mechanism is, however, very complex and distinct possibilities have been proposed. By efficiently combining DFT and CASPT2 methodologies, the chemiluminescence mechanism has been studied in three steps: 1)luminol oxygenation to generate the chemiluminophore, 2)a chemiexcitation step, and 3)generation of the light emitter. The findings demonstrate that the luminol double-deprotonated dianion activates molecular oxygen, diazaquinone is not formed, and the chemiluminopho…