0000000000276466

AUTHOR

Sergejs Olonkins

showing 2 related works from this author

Cladding-Pumped Er/Yb-Co-Doped Fiber Amplifier for Multi-Channel Operation

2022

The Institute of Solid State Physics, University of Latvia, as a Center of Excellence, has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2. We express our gratitude to rer. nat. Nicoletta Haarlammert from Fraunhofer Institute for Applied Optics and Precision Engineering IOF for the refractive index measurements of ytterbium/erbium-co-doped fibers. This work is supported by the European Regional Development Fund project No. 1.1.1.1/18/A/068.

fiber-optic systemsabsorption and emission spectra:NATURAL SCIENCES::Physics [Research Subject Categories]overlap factorRadiology Nuclear Medicine and imagingerbium/ ytterbium co-dopingwavelength division multiplexingInstrumentationcladding-pumped doped fiber amplifierAtomic and Molecular Physics and Opticsabsorption and emission spectra; cladding-pumped doped fiber amplifier; erbium/ytterbium co-doping; fiber-optic systems; overlap factor; wavelength division multiplexingPhotonics
researchProduct

Cladding-Pumped Erbium/Ytterbium Co-Doped Fiber Amplifier for C-Band Operation in Optical Networks

2021

Space-division multiplexing (SDM) attracts attention to cladding-pumped optical amplifiers, but they suffer from a low pump power conversion efficiency. To address this issue, ytterbium (Yb3+) and erbium (Er3+) co-doping is considered as an effective approach. However, it changes the gain profile of Er3+-doped fiber amplifiers and induces the gain difference between optical wavelengths in the C-band, significantly limiting the effective band of the dense wavelength-division multiplexed (DWDM) system. This paper is devoted to a detailed study of a cladding-pumped Er3+/Yb3+ co-doped fiber amplifier (EYDFA) through numerical simulations aiming to identify a configuration, before assembling a s…

Materials scienceActive laser mediumchemistry.chemical_elementOptical power02 engineering and technologyNoise figure01 natural scienceslcsh:Technologyoptical fiber networkAbsolute gain010309 opticsErbiumlcsh:Chemistry020210 optoelectronics & photonicsWavelength-division multiplexing0103 physical sciences0202 electrical engineering electronic engineering information engineering:NATURAL SCIENCES:Physics [Research Subject Categories]General Materials Scienceerbium/ytterbium co-dopingInstrumentationlcsh:QH301-705.5wavelength division multiplexingcladding-pumped optical amplifierFluid Flow and Transfer ProcessesOptical amplifierbusiness.industrylcsh:TProcess Chemistry and TechnologyAmplifierGeneral Engineeringsimulationbit error ratelcsh:QC1-999Computer Science Applicationschemistrylcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Optoelectronicsdoped fiber amplifiersbusinesslcsh:Engineering (General). Civil engineering (General)lcsh:Physics
researchProduct