Quantum simulation of quantum relativistic diffusion via quantum walks
Two models are first presented, of one-dimensional discrete-time quantum walk (DTQW) with temporal noise on the internal degree of freedom (i.e., the coin): (i) a model with both a coin-flip and a phase-flip channel, and (ii) a model with random coin unitaries. It is then shown that both these models admit a common limit in the spacetime continuum, namely, a Lindblad equation with Dirac-fermion Hamiltonian part and, as Lindblad jumps, a chirality flip and a chirality-dependent phase flip, which are two of the three standard error channels for a two-level quantum system. This, as one may call it, Dirac Lindblad equation, provides a model of quantum relativistic spatial diffusion, which is ev…
Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks
International audience; Gauge invariance is one of the more important concepts in physics. We discuss this concept in connection with the unitary evolution of discrete-time quantum walks in one and two spatial dimensions, when they include the interaction with synthetic, external electromagnetic fields. One introduces this interaction as additional phases that play the role of gauge fields. Here, we present a way to incorporate those phases, which differs from previous works. Our proposal allows the discrete derivatives, that appear under a gauge transformation, to treat time and space on the same footing, in a way which is similar to standard lattice gauge theories. By considering two step…
Quantum walks in weak electric fields and Bloch oscillations
Bloch oscillations appear when an electric field is superimposed on a quantum particle that evolves on a lattice with a tight-binding Hamiltonian (TBH), i.e., evolves via what we will call an electric TBH; this phenomenon will be referred to as TBH Bloch oscillations. A similar phenomenon is known to show up in so-called electric discrete-time quantum walks (DQWs); this phenomenon will be referred to as DQW Bloch oscillations. This similarity is particularly salient when the electric field of the DQW is weak. For a wide, i.e., spatially extended initial condition, one numerically observes semi-classical oscillations, i.e., oscillations of a localized particle, both for the electric TBH and …
Quantum walks and non-Abelian discrete gauge theory
A new family of discrete-time quantum walks (DTQWs) on the line with an exact discrete $U(N)$ gauge invariance is introduced. It is shown that the continuous limit of these DTQWs, when it exists, coincides with the dynamics of a Dirac fermion coupled to usual $U(N)$ gauge fields in $2D$ spacetime. A discrete generalization of the usual $U(N)$ curvature is also constructed. An alternate interpretation of these results in terms of superimposed $U(1)$ Maxwell fields and $SU(N)$ gauge fields is discussed in the Appendix. Numerical simulations are also presented, which explore the convergence of the DTQWs towards their continuous limit and which also compare the DTQWs with classical (i.e. non-qu…