0000000000276665

AUTHOR

Andreu Anglés-castillo

0000-0003-2883-4851

showing 2 related works from this author

Quantum simulation of quantum relativistic diffusion via quantum walks

2019

Two models are first presented, of one-dimensional discrete-time quantum walk (DTQW) with temporal noise on the internal degree of freedom (i.e., the coin): (i) a model with both a coin-flip and a phase-flip channel, and (ii) a model with random coin unitaries. It is then shown that both these models admit a common limit in the spacetime continuum, namely, a Lindblad equation with Dirac-fermion Hamiltonian part and, as Lindblad jumps, a chirality flip and a chirality-dependent phase flip, which are two of the three standard error channels for a two-level quantum system. This, as one may call it, Dirac Lindblad equation, provides a model of quantum relativistic spatial diffusion, which is ev…

Statistics and ProbabilityQuantum decoherenceDirac (software)FOS: Physical sciencesGeneral Physics and AstronomyQuantum simulator01 natural sciences010305 fluids & plasmassymbols.namesake[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Quantum mechanics0103 physical sciencesQuantum systemQuantum walk010306 general physicsQuantumComputingMilieux_MISCELLANEOUSMathematical PhysicsPhysicsQuantum PhysicsLindblad equationStatistical and Nonlinear Physics[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Modeling and SimulationsymbolsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)Journal of Physics A: Mathematical and Theoretical
researchProduct

On the deceleration of Fanaroff-Riley Class I jets: mass loading of magnetized jets by stellar winds.

2020

In this paper we present steady-state RMHD simulations that include a mass-load term to study the process of jet deceleration. The mass-load mimics the injection of a proton-electron plasma from stellar winds within the host galaxy into initially pair plasma jets, with mean stellar mass-losses ranging from $10^{-14}$ to $10^{-9}\,{M_\odot\,yr^{-1}}$. The spatial jet evolution covers $\sim 500\,{\rm pc}$ from jet injection in the grid at 10~pc from the jet nozzle. Our simulations use a relativistic gas equation of state and a pressure profile for the ambient medium. We compare these simulations with previous dynamical simulations of relativistic, non-magnetised jets. Our results show that to…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsJet (fluid)Stellar populationMagnetic energyEquation of state (cosmology)Radio galaxyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsPlasmaGalaxySpace and Planetary ScienceElliptical galaxyAstrophysics - High Energy Astrophysical PhenomenaMonthly Notices of the Royal Astronomical Society
researchProduct