Quantum simulation of quantum relativistic diffusion via quantum walks
Two models are first presented, of one-dimensional discrete-time quantum walk (DTQW) with temporal noise on the internal degree of freedom (i.e., the coin): (i) a model with both a coin-flip and a phase-flip channel, and (ii) a model with random coin unitaries. It is then shown that both these models admit a common limit in the spacetime continuum, namely, a Lindblad equation with Dirac-fermion Hamiltonian part and, as Lindblad jumps, a chirality flip and a chirality-dependent phase flip, which are two of the three standard error channels for a two-level quantum system. This, as one may call it, Dirac Lindblad equation, provides a model of quantum relativistic spatial diffusion, which is ev…
On the deceleration of Fanaroff-Riley Class I jets: mass loading of magnetized jets by stellar winds.
In this paper we present steady-state RMHD simulations that include a mass-load term to study the process of jet deceleration. The mass-load mimics the injection of a proton-electron plasma from stellar winds within the host galaxy into initially pair plasma jets, with mean stellar mass-losses ranging from $10^{-14}$ to $10^{-9}\,{M_\odot\,yr^{-1}}$. The spatial jet evolution covers $\sim 500\,{\rm pc}$ from jet injection in the grid at 10~pc from the jet nozzle. Our simulations use a relativistic gas equation of state and a pressure profile for the ambient medium. We compare these simulations with previous dynamical simulations of relativistic, non-magnetised jets. Our results show that to…