0000000000276666

AUTHOR

Pablo Arrighi

Quantum simulation of quantum relativistic diffusion via quantum walks

Two models are first presented, of one-dimensional discrete-time quantum walk (DTQW) with temporal noise on the internal degree of freedom (i.e., the coin): (i) a model with both a coin-flip and a phase-flip channel, and (ii) a model with random coin unitaries. It is then shown that both these models admit a common limit in the spacetime continuum, namely, a Lindblad equation with Dirac-fermion Hamiltonian part and, as Lindblad jumps, a chirality flip and a chirality-dependent phase flip, which are two of the three standard error channels for a two-level quantum system. This, as one may call it, Dirac Lindblad equation, provides a model of quantum relativistic spatial diffusion, which is ev…

research product

Dirac equation as a quantum walk over the honeycomb and triangular lattices

A discrete-time Quantum Walk (QW) is essentially an operator driving the evolution of a single particle on the lattice, through local unitaries. Some QWs admit a continuum limit, leading to well-known physics partial differential equations, such as the Dirac equation. We show that these simulation results need not rely on the grid: the Dirac equation in $(2+1)$--dimensions can also be simulated, through local unitaries, on the honeycomb or the triangular lattice. The former is of interest in the study of graphene-like materials. The latter, we argue, opens the door for a generalization of the Dirac equation to arbitrary discrete surfaces.

research product