0000000000276728
AUTHOR
Elina Makarova
Decreases in Circulating Concentrations of Long-Chain Acylcarnitines and Free Fatty Acids During the Glucose Tolerance Test Represent Tissue-Specific Insulin Sensitivity
Background: Insulin plays a pivotal role in the regulation of both carbohydrate and lipid intermediate turnover and metabolism. In the transition from a fasted to fed state, insulin action inhibits lipolysis in adipocytes, and acylcarnitine synthesis in the muscles and heart. The aim of this study was to measure free fatty acid (FFA) and acylcarnitine levels during the glucose tolerance test as indicators of tissue-specific insulin resistance. Results: Insulin release in response to glucose administration decreased both FFA and long-chain acylcarnitine levels in plasma in healthy control animals by 30% (120 min). The glucose tolerance test and [3H]-deoxy-D-glucose uptake in tissues revealed…
Low-intensity exercise stimulates bioenergetics and increases fat oxidation in mitochondria of blood mononuclear cells from sedentary adults.
Aim Exercise training induces adaptations in muscle and other tissue mitochondrial metabolism, dynamics, and oxidative phosphorylation capacity. Mitochondrial fatty acid oxidation was shown to be pivotal for the anti‐inflammatory status of immune cells. We hypothesize that exercise training can exert effects influence mitochondrial fatty acid metabolism in peripheral blood mononuclear cells (PBMCs). The aim was to investigate the effect of exercise on the fatty acid oxidation‐dependent respiration in PBMCs. Design Twelve fasted or fed volunteers first performed incremental‐load exercise tests to exhaustion on a cycle ergometer to determine the optimal workload ensuring maximal health benefi…