0000000000276740

AUTHOR

Andreas Weber

GADD45α is highly expressed in pancreatic ductal adenocarcinoma cells and required for tumor cell viability

Pancreatic ductal adenocarcinoma is one of the most common causes of cancer death in the western civilization. Recently, NF-kappaB has been shown to be activated in pancreatic ductal adenocarcinoma through constitutive activation of IkappaB kinase (IKK). Inhibition of NF-kappaB by a super-inhibitor of NF-kappaB--delta-N-IkappaBalpha--resulted in impaired proliferation and induction of apoptosis, suggesting an important role of NF-kappaB in pancreatic tumorigenesis. Downstream target genes of IkappaBalpha have not been elucidated in pancreatic ductal adenocarcinoma in detail. Using expression profiling by cDNA array analysis of pancreatic ductal adenocarcinoma cell lines stably transfected w…

research product

Resveratrol-Induced Temporal Variation in the Mechanical Properties of MCF-7 Breast Cancer Cells Investigated by Atomic Force Microscopy

Atomic force microscopy (AFM) combined with fluorescence microscopy has been used to quantify cytomechanical modifications induced by resveratrol (at a fixed concentration of 50 &micro

research product

Microtubule disruption changes endothelial cell mechanics and adhesion

AbstractThe interest in studying the mechanical and adhesive properties of cells has increased in recent years. The cytoskeleton is known to play a key role in cell mechanics. However, the role of the microtubules in shaping cell mechanics is not yet well understood. We have employed Atomic Force Microscopy (AFM) together with confocal fluorescence microscopy to determine the role of microtubules in cytomechanics of Human Umbilical Vein Endothelial Cells (HUVECs). Additionally, the time variation of the adhesion between tip and cell surface was studied. The disruption of microtubules by exposing the cells to two colchicine concentrations was monitored as a function of time. Already, after 3…

research product

Measuring (biological) materials mechanics with atomic force microscopy. 2. Influence of the loading rate and applied force (colloidal particles)

Atomic force microscopy (AFM) is the most often used tool to study the mechanical properties of eukaryotic cells. Due to their complex assembly, cells show viscoelastic properties. When performing experiments, one has to consider the influence of both loading rate and maximum load on the measured mechanical properties. Here, we employed colloidal particles of various sizes (from 2 to 20 μm diameter) to perform force spectroscopy measurements on endothelial cells at loading rates varying from 0.1 to 50 μm/s, and maximum loads ranging from 1 to 25 nN. We were able to determine the non-linear dependence of cell viscoelastic properties on the loading rate which followed a weak power law. In add…

research product