0000000000276771
AUTHOR
Cyrile Deranlot
Self-Assembled Monolayer-Functionalized Half-Metallic Manganite for Molecular Spintronics
(La,Sr)MnO(3) manganite (LSMO) has emerged as the standard ferromagnetic electrode in organic spintronic devices due to its highly spin-polarized character and air stability. Whereas organic semiconductors and polymers have been mainly envisaged to propagate spin information, self-assembled monolayers (SAMs) have been overlooked and should be considered as promising materials for molecular engineering of spintronic devices. Surprisingly, up to now the first key step of SAM grafting protocols over LSMO surface thin films is still missing. We report the grafting of dodecyl (C12P) and octadecyl (C18P) phosphonic acids over the LSMO half-metallic oxide. Alkylphosphonic acids form ordered self-a…
Self-assembled monolayers based spintronics: from ferromagnetic surface functionalization to spin-dependent transport.
Chemically functionalized surfaces are studied for a wide range of applications going from medicine to electronics. Whereas non-magnetic surfaces have been widely studied, functionalization of magnetic surfaces is much less common and has almost never been used for spintronics applications. In this article we present the functionalization of La2/3Sr1/3MnO3, a ferromagnetic oxide, with self-assembled monolayers for spintronics. La2/3Sr1/3MnO3 is the prototypical half-metallic manganite used in spintronics studies. First, we show that La2/3Sr1/3MnO3 can be functionalized by alkylphosphonic acid molecules. We then emphasize the use of these functionalized surfaces in spintronics devices such a…