Reliable Paroxysmal Atrial Fibrillation Substrate Assessment During Sinus Rhythm Through Optimal Estimation of Local Activation Waves Dynamics
[EN] The analysis of coronary sinus (CS) electrograms (EGMs) during catheter ablation (CA) of atrial fibrillation (AF) is highly important for AF substrate evaluation. However, channels of the CS catheter may be affected by vigorous cardiac movement and bad contact. This work investigates the most reliable channels in preserving the AF dynamics during sinus rhythm (SR). Local activation waves (LAWs) were detected in 44 bipolar CS recordings of 60-300 seconds duration in 28 paroxysmal AF patients undergoing CA. Recordings consisted of five channels: distal, mid-distal, medial, mid-proximal and proximal. LAW duration, amplitude, area and correlation between dominant morphologies of each chann…
Assisting Electrophysiological Substrate Quantification in Atrial Fibrillation Ablation
[EN] Catheter ablation (CA) is the most popular treatment of atrial fibrillation (AF) with good results in paroxysmal AF, while its efficiency is significantly reduced in persistent AF. With the equipment used for CA strongly depending on electro-gram (EGM) fractionation quantification, the use of a reliable fractionation estimator is crucial to reduce the high recurrence rates in persistent AF. This work introduces a non-linear EGM fractionation quantification technique, which is based on coarse-grained correlation dimension (CGCD) computed over epochs of 1 second. Recordings were firstly normalized, denoised and lowpass filtered. The final CGCD value was calculated by the median CGCD valu…
Reliability of Local Activation Waves Features to Characterize Paroxysmal Atrial Fibrillation Substrate During Sinus Rhythm
[EN] Analysis of coronary sinus (CS) electrograms (EGMs) is vastly used for the assessment of the atrial fibrillation (AF) substrate. As a catheter consists of five dipoles (distal, mid-distal, medial, mid-proximal, proximal), results may vary upon the employed channel: myocardial contraction and bad contact are unavoidable factors affecting the recording. This work aims to specify the most reliable channels in catching AF dynamics, using 44 multichannel bipolar CS recordings in sinus rhythm (SR) of paroxysmal AF with 1-5 minutes duration. Local activation waves (LAWs) were detected and main features obtained: duration, amplitude, area and correlation between dominant morphologies of each c…