0000000000276890

AUTHOR

N. Rowley

showing 5 related works from this author

Effects of weakly coupled channels on quasielastic barrier distributions

2009

Heavy-ion collisions often produce fusion barrier distributions with structures displaying a fingerprint of couplings to highly collective excitations. Similar distributions can be obtained from large-angle quasielastic scattering, although in this case, the role of the many weak direct-reaction channels is unclear. For $^{20}\mathrm{Ne}+^{90}\mathrm{Zr}$, we have observed the barrier structures expected for the highly deformed neon projectile; however, for $^{20}\mathrm{Ne}+^{92}\mathrm{Zr}$, we find significant extra absorption into a large number of noncollective inelastic channels. This leads to smearing of the barrier distribution and a consequent reduction in the ``resolving power'' o…

PhysicsNuclear and High Energy PhysicsQuasielastic scattering010308 nuclear & particles physicschemistry.chemical_elementFusion barrier[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNeonDistribution (mathematics)chemistry0103 physical sciencesQuasiparticleAbsorption (logic)Atomic physics010306 general physicsNuclear Experiment
researchProduct

Fission Barrier of Superheavy Nuclei and Persistence of Shell Effects at High Spin: Cases ofNo254andTh220

2014

We report on the first measurement of the fission barrier height in a heavy shell-stabilized nucleus. The fission barrier height of No-254 is measured to be B-f = 6.0 +/- 0.5 MeV at spin 15 (h) over bar and, by extrapolation, B-f = 6.6 +/- 0.9 MeV at spin 0 (h) over bar. This information is deduced from the measured distribution of entry points in the excitation energy versus spin plane. The same measurement is performed for Th-220 and only a lower limit of the fission barrier height can be determined: B-f (I) > 8 MeV. Comparisons with theoretical fission barriers test theories that predict properties of superheavy elements.

PhysicsCluster decayFissionNuclear TheoryExtrapolationShell (structure)General Physics and Astronomy7. Clean energyNuclear physicsmedicine.anatomical_structuremedicineAtomic physicsNuclear ExperimentSpin (physics)NucleusExcitationBar (unit)Physical Review Letters
researchProduct

Exploring the stability of super heavy elements: First Measurement of the Fission Barrier of $^{254} $No

2013

The gamma-ray multiplicity and total energy emitted by the heavy nucleus 254No have been measured at 2 different beam energies. From these measurements, the initial distributions of spin I and excitation energy E * of 254No were constructed. The distributions display a saturation in excitation energy, which allows a direct determination of the fission barrier. 254No is the heaviest shell-stabilized nucleus with a measured fission barrier. © Owned by the authors, published by EDP Sciences, 2014.

Physicsta114Fissionheavy elementsPhysicsQC1-999Nuclear Theoryfission barrierTransactinide elementstability[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energyNuclear physicsmedicine.anatomical_structuremedicineNuclear structureMultiplicity (chemistry)Total energyAtomic physicsNuclear ExperimentSaturation (magnetic)NucleusExcitationComputingMilieux_MISCELLANEOUS
researchProduct

Competing quasiparticle configurations in W-163

2010

WOS: 000274002700019

PhysicsNuclear and High Energy PhysicsIsotopeNeutron emissionStable isotope ratioExcited stateQuasiparticleParity (physics)NuclideAtomic physics[0-Belirlenecek]Radioactive decay
researchProduct

Stability and synthesis of superheavy elements: Fighting the battle against fission – example of $^{254}$No

2016

International audience; Superheavy nuclei exist solely due to quantum shell effects,which create a pocket in the potential-energy surface of the nucleus, thusproviding a barrier against spontaneous fission. Determining the height ofthe fission barrier and its angular-momentum dependence is important toquantify the role that microscopic shell corrections play in enhancing andextending the limits of nuclear stability. In this talk, the first measurement ofa fission barrier in the very heavy nucleus 254No will be presented.

FissionQC1-999Nuclear TheoryShell (structure)nuclear stabilitySuperheavy Elements[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesStability (probability)Nuclear physics0103 physical sciencesmedicinePhysics::Atomic and Molecular Clusters010306 general physicsNuclear ExperimentQuantumSpontaneous fissionPhysicsnobeliumta114010308 nuclear & particles physicsPhysicsfission barriersuperheavy elementsmedicine.anatomical_structureAtomic physicsNucleus
researchProduct