0000000000276890
AUTHOR
N. Rowley
Effects of weakly coupled channels on quasielastic barrier distributions
Heavy-ion collisions often produce fusion barrier distributions with structures displaying a fingerprint of couplings to highly collective excitations. Similar distributions can be obtained from large-angle quasielastic scattering, although in this case, the role of the many weak direct-reaction channels is unclear. For $^{20}\mathrm{Ne}+^{90}\mathrm{Zr}$, we have observed the barrier structures expected for the highly deformed neon projectile; however, for $^{20}\mathrm{Ne}+^{92}\mathrm{Zr}$, we find significant extra absorption into a large number of noncollective inelastic channels. This leads to smearing of the barrier distribution and a consequent reduction in the ``resolving power'' o…
Fission Barrier of Superheavy Nuclei and Persistence of Shell Effects at High Spin: Cases ofNo254andTh220
We report on the first measurement of the fission barrier height in a heavy shell-stabilized nucleus. The fission barrier height of No-254 is measured to be B-f = 6.0 +/- 0.5 MeV at spin 15 (h) over bar and, by extrapolation, B-f = 6.6 +/- 0.9 MeV at spin 0 (h) over bar. This information is deduced from the measured distribution of entry points in the excitation energy versus spin plane. The same measurement is performed for Th-220 and only a lower limit of the fission barrier height can be determined: B-f (I) > 8 MeV. Comparisons with theoretical fission barriers test theories that predict properties of superheavy elements.
Exploring the stability of super heavy elements: First Measurement of the Fission Barrier of $^{254} $No
The gamma-ray multiplicity and total energy emitted by the heavy nucleus 254No have been measured at 2 different beam energies. From these measurements, the initial distributions of spin I and excitation energy E * of 254No were constructed. The distributions display a saturation in excitation energy, which allows a direct determination of the fission barrier. 254No is the heaviest shell-stabilized nucleus with a measured fission barrier. © Owned by the authors, published by EDP Sciences, 2014.
Competing quasiparticle configurations in W-163
WOS: 000274002700019
Stability and synthesis of superheavy elements: Fighting the battle against fission – example of $^{254}$No
International audience; Superheavy nuclei exist solely due to quantum shell effects,which create a pocket in the potential-energy surface of the nucleus, thusproviding a barrier against spontaneous fission. Determining the height ofthe fission barrier and its angular-momentum dependence is important toquantify the role that microscopic shell corrections play in enhancing andextending the limits of nuclear stability. In this talk, the first measurement ofa fission barrier in the very heavy nucleus 254No will be presented.