0000000000276891
AUTHOR
M. Sillanpää
Effects of weakly coupled channels on quasielastic barrier distributions
Heavy-ion collisions often produce fusion barrier distributions with structures displaying a fingerprint of couplings to highly collective excitations. Similar distributions can be obtained from large-angle quasielastic scattering, although in this case, the role of the many weak direct-reaction channels is unclear. For $^{20}\mathrm{Ne}+^{90}\mathrm{Zr}$, we have observed the barrier structures expected for the highly deformed neon projectile; however, for $^{20}\mathrm{Ne}+^{92}\mathrm{Zr}$, we find significant extra absorption into a large number of noncollective inelastic channels. This leads to smearing of the barrier distribution and a consequent reduction in the ``resolving power'' o…
Experimental Linear Energy Transfer of Heavy Ions in Silicon for RADEF Cocktail Species
Experimental linear energy transfer values of heavy ions in silicon are presented with comparison to estimations from different semi empirical codes widely used among the community. This paper completes the experimental LET data for the RADEF cocktail ions in silicon.
Particle identification with time-of-flight and pulse-shape discrimination in neutron-transmutation-doped silicon detectors
Abstract A method for the identification of energetic charged particles has been investigated based on the employment of pulse-shape discrimination (PSD) in a silicon detector in addition to conventional time-of-flight (ToF) techniques. The method makes use of the fact that, at fixed energy, the particle's velocity, or ToF, is a measure of the particle's mass A while the time structure of the current pulse in a silicon energy detector, used as the ToF stop, permits identification of nuclear charges Z. In the measurements presented here, ToF and PSD methods were applied simultaneously. We used micro-channel plate (MCP) detectors as fast time pick-offs and surface-barrier (SB) n-type Si detec…
Energy distribution of ternaryαparticles in spontaneous fission ofCf252
The energy distribution of the ternary $\ensuremath{\alpha}$ particles in spontaneous fission of $^{252}\mathrm{Cf}$ was measured. For the first time an energy threshold as low as 1 MeV was reached. The experiment used an array of unshielded silicon detectors measuring energy and time-of-flight (TOF) of ternary particles in coincidence with fission fragments. The TOF resolution of the system was sufficient for clear separation of $^{6}\mathrm{He}$ and tritons from $^{4}\mathrm{He}$. The statistics were adequate to extract the $^{6}\mathrm{He}$/$^{4}\mathrm{He}$ yield ratio. For both $^{4}\mathrm{He}$ and $^{6}\mathrm{He}$, an excess in the yield (as compared to a Gaussian shape) was observe…
Smoothing of structure in the fusion and quasielastic barrier distributions for the20Ne+208Pb system
We present simultaneously measured barrier distributions for the ${}^{20}$Ne $+$ ${}^{208}$Pb system derived from large-angle quasielastic scattering and fusion, in the latter case by means of the detection of fission fragments. Both distributions turned out to be smooth, in spectacular disagreement with the results of standard coupled-channels calculations. Namely, they do not posses the strong structure expected from coupled-channels calculations, even if apparently they take into account explicitly all relevant strong couplings. This points to the importance of weak channels, i.e., transfer reactions and scattering connected with noncollective excitations.