0000000000277169

AUTHOR

Ingo Mey

Mechanically interlocked calix[4]arene dimers display reversible bond breakage under force.

The physics of nanoscopic systems is strongly governed by thermal fluctuations that produce significant deviations from the behaviour of large ensembles1,2. Stretching experiments of single molecules offer a unique way to study fundamental theories of statistical mechanics, as recently shown for the unzipping of RNA hairpins3. Here, we report a molecular design based on oligo calix[4]arene catenanes—calixarene dimers held together by 16 hydrogen bridges—in which loops within the molecules limit how far the calixarene nanocapsules can be separated. This mechanically locked structure tunes the energy landscape of dimers, thus permitting the reversible rupture and rejoining of the individual n…

research product

Phase selection of calcium carbonate through the chirality of adsorbed amino acids.

research product

Liquid Crystals from Polymer-Functionalized TiO2 Nanorod Mesogens

In this work, we functionalized TiO2 nanorods with dopamine-functionalized diblock copolymers. After functionalization, they are well dispersible in organic solvents. Light scattering proves that t...

research product

Inside Cover: Phase Selection of Calcium Carbonate through the Chirality of Adsorbed Amino Acids (Angew. Chem. Int. Ed. 29/2007)

research product

Viscoelasticity of pore-spanning polymer membranes derived from giant polymersomes

We show how the viscoelastic properties of membranes formed from poly(butadiene)-block-poly(ethylene oxide) (PB130-b-PEO66) block copolymers can be locally accessed by atomic force microscopy. Polymer membranes are spread on microstructured porous silicon substrates from PB130-b-PEO66 vesicles by decreasing the osmotic pressure of the solution. Local viscoelastic properties of the pore-spanning polymer membranes were obtained from site-specific indentation experiments. Elastic moduli of these membranes were in the order of few MPa, while the elastic moduli of cross-linked membranes considerably increased to few GPa. Furthermore, the energy dissipation and velocity dependence of the hysteres…

research product

Pseudomorphic transformation of amorphous calcium carbonate films follows spherulitic growth mechanisms and can give rise to crystal lattice tilting

Amorphous calcium carbonate films synthesized by the polymer-induced liquid-precursor (PILP) process convert into crystallographically complex calcite spherulites. Tuning the experimental parameters allows for the generation of crystal lattice tilting similar to that found in calcareous biominerals. This contribution evidences the role of spherulitic growth mechanisms in pseudomorphic transformations of calcium carbonate.

research product

Innentitelbild: Phasenselektion von Calciumcarbonat durch die Chiralität adsorbierter Aminosäuren (Angew. Chem. 29/2007)

research product

Mechanical Properties of Single Molecules and Polymer Aggregates

This chapter deals with the mechanical properties of single polymer chains, aggregates, and supramolecular complexes. The topics discussed cover a broad range from fundamental statistical mechanics of the equilibrium elastic properties of single polymer chains to details of the behavior of binding pockets in biomolecular assemblies as observed by force spectroscopy. The first section treats the equilibrium mechanical properties of single polymer chains in various environments, investigated via extensive simulations employing coarse-grained models that have proven extremely successful in many branches of polymer physics, namely the bond-fluctuation model and the self-avoiding walk model. Apa…

research product

Phasenselektion von Calciumcarbonat durch die Chiralität adsorbierter Aminosäuren

research product