0000000000277300

AUTHOR

Juhani Huovelin

showing 8 related works from this author

The Athena X-ray Integral Field Unit (X-IFU)

2016

Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh, United Kingdom.

Computer science[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyObservatoriesField of viewAthena; Instrumentation; Space telescopes; X-ray Integral Field Unit; X-ray spectroscopy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineering7. Clean energy01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E AstrofisicalawObservatoryAthena Instrumentation Space telescopes X-ray spectroscopy X-ray Integral Field UnitAthena010303 astronomy & astrophysicsInstrumentation[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]SpectroscopyHigh Energy Astrophysical Phenomena (astro-ph.HE)Equipment and servicesApplied MathematicsX-rayComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsProceedings of SPIE - the International Society for Optical EngineeringX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Spectral resolutionFOS: Physical sciencesMinute of arcSpace telescopesTelescope0103 physical sciencesX-raysElectronicOptical and Magnetic Materials[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Spectral resolutionElectrical and Electronic Engineering010306 general physicsSpectroscopyInstrumentation and Methods for Astrophysics (astro-ph.IM)Remote sensingPixelAstrophysics - Astrophysics of GalaxiesAstrophysics of Galaxies (astro-ph.GA)X-ray Integral Field Unit[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Telescopes
researchProduct

JEM–X inflight performance

2003

We summarize the inflight performance of JEM-X, the X-ray monitor on the INTEGRAL mission during the initial ten months of operations. The JEM-X instruments have now been tuned to stable operational conditions. The performance is found to be close to the pre-launch expectations. The ground calibrations and the inflight calibration data permit to determine the instruments characteristics to fully support the scientific data analysis. Reglero Velasco, Victor, Victor.Reglero@uv.es ; Martinez Nuñez, Silvia, Silvia.Martinez@uv.es

PhysicsInstrumentation: detectors; X-rays: general;010308 nuclear & particles physicsDetectors ; X–rays ; JEM-XDetectorsAstronomy and AstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]01 natural sciencesSpace and Planetary ScienceJEM-X0103 physical sciencesCalibrationUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia010303 astronomy & astrophysics:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]X–raysRemote sensingAstronomy & Astrophysics
researchProduct

Radiation hardness studies of CdTe and for the SIXS particle detector on-board the BepiColombo spacecraft

2009

Abstract We report of the radiation hardness measurements that were performed in the developing work of a particle detector on-board ESA's forthcoming BepiColombo spacecraft. Two different high- Z semiconductor compounds, cadmium telluride (CdTe) and mercuric iodide (HgI 2 ), were irradiated with 22 MeV protons in four steps to attain the estimated total dose of 10 12 p / cm 2 for the mission time. The performance of the detectors was studied before and after every irradiation with radioactive 55 Fe source Mn K α 5.9 keV emission line. We studied the impact of the proton beam exposure on detector leakage current, energy resolution and charge collection efficiency (CCE). Also the reconstruct…

010302 applied physicsPhysicsNuclear and High Energy PhysicsProton010308 nuclear & particles physicsbusiness.industryDetector7. Clean energy01 natural sciencesCadmium telluride photovoltaicsParticle detectorSemiconductor detectorSemiconductor13. Climate action0103 physical sciencesOptoelectronicsIrradiationbusinessInstrumentationRadiation hardeningNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

The Large Observatory For x-ray Timing

2014

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

x-ray and γ-ray instrumentationcompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringVisionX-ray timingObservatoriesField of view01 natural sciences7. Clean energyneutron starsObservatory010303 astronomy & astrophysicsPhysicsEquipment and servicesApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsSteradian[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Computer Science Applications1707 Computer Vision and Pattern RecognitionX-ray detectorsCondensed Matter Physicscompact objectsX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsX-ray detector[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cosmic VisionSpectral resolutionmicrochannel platesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNOmicrochannel platecompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia e AstrofisicaX-rayscompact object0103 physical sciencesElectronicOptical and Magnetic MaterialsElectrical and Electronic EngineeringSpectral resolutionInstrumentation and Methods for Astrophysics (astro-ph.IM)dense hadronic matterSensors010308 nuclear & particles physicsX-ray imagingAstronomyAccretion (astrophysics)[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron star13. Climate actionx-ray and γ-ray instrumentation; neutron stars; dense hadronic matter[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Gamma-ray burstastro-ph.IM
researchProduct

JEM–X science analysis software

2003

The science analysis of the data from JEM-X on INTEGRAL is performed through a number of levels including corrections, good time selection, imaging and source finding, spectrum and light-curve extraction. These levels consist of individual executables and the running of the complete analysis is controlled by a script where parameters for detailed settings are introduced. The end products are FITS files with a format compatible with standard analysis packages such as XSPEC. Martinez Nuñez, Silvia, Silvia.Martinez@uv.es

Software ; X-ray data analysis ; INTEGRAL ; Satellite ; JEM-X010504 meteorology & atmospheric sciencesAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA01 natural sciencesSoftware0103 physical sciencesAnalysis software010303 astronomy & astrophysicsSelection (genetic algorithm)0105 earth and related environmental sciencesPhysicsX-ray data analysisINTEGRALbusiness.industryAstronomy and Astrophysicscomputer.file_format:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Computer engineeringSatelliteSpace and Planetary ScienceJEM-XSatelliteExecutableUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogoniabusinesscomputerSoftware:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]Astronomy & Astrophysics
researchProduct

The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

2023

The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (i…

X-IFU: The X-ray Integral Field UnitCosmology and Nongalactic Astrophysics (astro-ph.CO)The X-ray Integral Field Unit [X-IFU]Solar and stellar astrophysicsFOS: Physical sciences/dk/atira/pure/sustainabledevelopmentgoals/responsible_consumption_and_production[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Settore FIS/05 - Astronomia E AstrofisicaX-raysSDG 7 - Affordable and Clean EnergyInstrumentation and Methods for Astrophysics (astro-ph.IM)Solar and Stellar Astrophysics (astro-ph.SR)High Energy Astrophysical Phenomena (astro-ph.HE)/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyAstrophysics of GalaxiesAthena: the advanced telescope for high energy astrophysicsAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesAstrophysical phenomenaSpace instrumentationAstrophysics - Solar and Stellar AstrophysicsHigh energySpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]the advanced telescope for high energy astrophysics [Athena]Athena: the advanced telescope for high energy astrophysics · X-IFU: The X-ray Integral Field Unit · Space instrumentation · X-rays · ObservatoryObservatoryAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaSDG 12 - Responsible Consumption and ProductionAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Radiation Tolerance Tests of Small-Sized CsI(Tl) Scintillators Coupled to Photodiodes

2009

Radiation tolerance of small-sized CsI (Tl) crystals coupled to silicon photodiodes was studied by using protons. Irradiations up to the fluence of 1012 protons/cm2 were used. Degradation of light output by less than 5% was achieved.

Nuclear and High Energy Physics010504 meteorology & atmospheric sciencesSiliconTolerance analysisPhysics::Instrumentation and DetectorsPhysics::Medical Physicschemistry.chemical_elementScintillator01 natural sciences7. Clean energyFluence030218 nuclear medicine & medical imaginglaw.invention03 medical and health sciences0302 clinical medicineRadiation tolerancelawElectrical and Electronic EngineeringNuclear Experiment0105 earth and related environmental sciencesPhysicsbusiness.industryPhotodiodeNuclear Energy and EngineeringchemistryScintillation counterOptoelectronicsDegradation (geology)businessIEEE Transactions on Nuclear Science
researchProduct

The ATHENA X-ray Integral Field Unit (X-IFU)

2018

Event: SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas, United States.

Point spread functionPhotonAstrophysics::High Energy Astrophysical PhenomenaField of viewAthena; Instrumentation; Space telescopes; X-ray Integral Field Unit; X-ray spectroscopy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringCondensed Matter PhysicLarge format01 natural sciences7. Clean energySpace telescopeslaw.inventionTelescopePhysics::Popular PhysicsSettore FIS/05 - Astronomia E AstrofisicaOpticslawPhysics::Plasma Physics0103 physical sciencesElectronicAthenaOptical and Magnetic MaterialsSpectral resolutionElectrical and Electronic Engineering010306 general physics010303 astronomy & astrophysicsInstrumentationPhysicsSpectrometerbusiness.industryElectronic Optical and Magnetic MaterialApplied MathematicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter Physics115 Astronomy Space sciencePhysics::History of PhysicsApplied MathematicSpace telescopeX-ray Integral Field UnitX-ray spectroscopybusiness
researchProduct