0000000000277325

AUTHOR

Caroline A. Kilbourne

showing 8 related works from this author

The Athena X-ray Integral Field Unit (X-IFU)

2016

Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh, United Kingdom.

Computer science[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyObservatoriesField of viewAthena; Instrumentation; Space telescopes; X-ray Integral Field Unit; X-ray spectroscopy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineering7. Clean energy01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E AstrofisicalawObservatoryAthena Instrumentation Space telescopes X-ray spectroscopy X-ray Integral Field UnitAthena010303 astronomy & astrophysicsInstrumentation[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]SpectroscopyHigh Energy Astrophysical Phenomena (astro-ph.HE)Equipment and servicesApplied MathematicsX-rayComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsProceedings of SPIE - the International Society for Optical EngineeringX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Spectral resolutionFOS: Physical sciencesMinute of arcSpace telescopesTelescope0103 physical sciencesX-raysElectronicOptical and Magnetic Materials[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Spectral resolutionElectrical and Electronic Engineering010306 general physicsSpectroscopyInstrumentation and Methods for Astrophysics (astro-ph.IM)Remote sensingPixelAstrophysics - Astrophysics of GalaxiesAstrophysics of Galaxies (astro-ph.GA)X-ray Integral Field Unit[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Telescopes
researchProduct

The x-ray microcalorimeter spectrometer onboard Athena

2012

Trabajo presentado a la conferencia: "Space Telescopes and Instrumentation: Ultraviolet to Gamma Ray" celebrada en Amsterdam (Holanda) el 1 de julio de 2012.-- et al.

PhysicsSpacecraftSpectrometerCalorimeter (particle physics)business.industryDetectorAstrophysics::Instrumentation and Methods for AstrophysicsMissionslaw.inventionX-rayTelescopeX-ray missions micro-calorimeter AthenaOpticsCardinal pointSettore FIS/05 - Astronomia E AstrofisicaMicro-calorimeterAthena; Micro-calorimeter; Missions; X-raylawAthenaTransition edge sensorSpectral resolutionbusiness
researchProduct

Precise determination of the 1s Lamb Shift in hydrogen-like heavy ions at the ESR storage ring using microcalorimeters

2015

The precise determination of the energy of the Lyman α1 and α2 lines in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. To improve the precision of such experiments, the new detector concept of microcalorimeters, which detect the temperature change of an absorber after an incoming particle or photon has deposited its energy as heat, is now exploited. The microcalorimeters for x-rays used in these experiments consist of arrays of silicon thermometers and x-ray absorbers made of high-Z material. With such detectors, a relative energy resolution of about 1 per mille is obtained in the energy regime of 50–100 keV. Two successful measu…

PhysicsPhotonSiliconHydrogenPhysics::Instrumentation and DetectorsDetectorchemistry.chemical_elementGermaniumCondensed Matter PhysicsAtomic and Molecular Physics and OpticsLamb shiftIonchemistryAtomic physicsMathematical PhysicsStorage ringPhysica Scripta
researchProduct

Testing the X-IFU calibration requirements: an example for quantum efficiency and energy resolution

2018

With its array of 3840 Transition Edge Sensors (TESs) operated at 90 mK, the X-Ray Integral Field Unit (X-IFU) on board the ESA L2 mission Athena will provide spatially resolved high-resolution spectroscopy (2.5 eV FWHM up to 7 keV) over the 0.2 to 12 keV bandpass. The in-flight performance of the X-IFU will be strongly affected by the calibration of the instrument. Uncertainties in the knowledge of the overall system, from the filter transmission to the energy scale, may introduce systematic errors in the data, which could potentially compromise science objectives - notably those involving line characterisation e.g. turbulence velocity measurements - if not properly accounted for. Defining…

Field (physics)FOS: Physical sciencesCondensed Matter Physic01 natural sciences7. Clean energyX-raySettore FIS/05 - Astronomia E AstrofisicaBand-pass filter0103 physical sciencesCalibrationAthenaElectrical and Electronic Engineering010306 general physics010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)ComputingMilieux_MISCELLANEOUSPhysicsX-IFU[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Electronic Optical and Magnetic MaterialDetectorAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science Applications1707 Computer Vision and Pattern RecognitionFilter (signal processing)Computational physicsApplied MathematicPerformance verificationTransmission (telecommunications)CalibrationQuantum efficiencyAstrophysics - Instrumentation and Methods for AstrophysicsEnergy (signal processing)
researchProduct

High-precision X-ray spectroscopy of highly-charged ions at the experimental storage ring using silicon microcalorimeters

2017

Abstract X-ray spectroscopy on highly charged heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. One limitation of the current accuracy of such experiments is the energy resolution of available X-ray detectors for energies up to 100 keV. To improve this accuracy, a novel detector concept, namely the concept of microcalorimeters, is exploited for this kind of measurements. The microcalorimeters used in the present experiments consist of silicon thermometers, ensuring a high dynamic range, and of absorbers made of high-Z material to provide high X-ray absorption efficiency. Recently, besides an earlier used detector, a new compact detector design, h…

PhysicsCryostatNuclear and High Energy PhysicsX-ray spectroscopySiliconPhysics::Instrumentation and Detectors010308 nuclear & particles physicsbusiness.industryDynamic rangeDetectorchemistry.chemical_element01 natural sciencesOpticschemistry0103 physical sciencesAtomic physics010306 general physicsbusinessSpectroscopyInstrumentationStorage ringBeam (structure)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Precise determination of the 1s Lamb shift in hydrogen-like lead and gold using microcalorimeters

2016

Quantum electrodynamics in very strong Coulomb fields is one scope which has not yet been tested experimentally with suffcient accuracy to really determine whether the perturbative approach is valid. One sensitive test is the determination of the 1s Lamb Shift in highly-charged very heavy ions. The 1s Lamb Shift of hydrogen-like lead (Pb81+) and gold (Au78+) has been determined using the novel detector concept of silicon microcalorimeters for the detection of hard X-rays. The results of (260 +- 22) eV for lead and (208 +- 13) eV for gold are within error bars in good agreement with theoretical predictions. For hydrogen-like lead, this represents the most accurate determination of the 1s Lam…

PhysicsHydrogenSiliconAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsDetectorFOS: Physical scienceschemistry.chemical_elementCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsPhysics - Atomic PhysicsIonLamb shiftchemistry0103 physical sciencesCoulombElectric potentialAtomic physics010306 general physicsSpectroscopyJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

The focal plane assembly for the Athena X-ray Integral Field Unit instrument

2016

This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a ~ 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off…

CryostatPhysics::Instrumentation and DetectorsAperture01 natural sciencesfrequency division multiplexingfocal plane assemblySettore FIS/05 - Astronomia E AstrofisicaOpticsSensor array0103 physical sciencesElectronicSQUID amplifierAthenaOptical and Magnetic MaterialsElectrical and Electronic Engineeringta216010306 general physicsta113010302 applied physicsPhysicsX-IFUta114ta213business.industryStray lightApplied Mathematicstransition edge sensorDetectorAstrophysics::Instrumentation and Methods for AstrophysicsX-ray microcalorimeterComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsCardinal pointElectromagnetic shieldingcryogenic anti-coincidence detectorX-ray microcalorimeter transition edge sensor cryogenic anti-coincidence detector SQUID amplifier frequency division multiplexing Athena X-IFU focal plane assemblyTransition edge sensorbusinessAthena; cryogenic anti-coincidence detector; focal plane assembly; frequency division multiplexing; SQUID amplifier; transition edge sensor; X-IFU; X-ray microcalorimeter; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringSPIE Proceedings
researchProduct

High-precision x-ray spectroscopy of highly charged ions with microcalorimeters

2013

The precise determination of the energy of the Lyman α1 and α2 lines in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. To improve the experimental precision, the new detector concept of microcalorimeters is now exploited for such measurements. Such detectors consist of compensated-doped silicon thermistors and Pb or Sn absorbers to obtain high quantum efficiency in the energy range of 40–70 keV, where the Doppler-shifted Lyman lines are located. For the first time, a microcalorimeter was applied in an experiment to precisely determine the transition energy of the Lyman lines of lead ions at the experimental storage ring at GSI. T…

PhysicsRange (particle radiation)X-ray spectroscopySiliconPhysics::Instrumentation and DetectorsDetectorchemistry.chemical_elementCondensed Matter PhysicsAtomic and Molecular Physics and OpticsIonchemistryQuantum efficiencyAtomic physicsMathematical PhysicsStorage ringLine (formation)Physica Scripta
researchProduct