0000000000277349

AUTHOR

Illia Horenko

showing 6 related works from this author

Physically-inspired computational tools for sharp detection of material inhomogeneities in magnetic imaging

2019

Detection of material inhomogeneities is an important task in magnetic imaging and plays a significant role in understanding physical processes. For example, in spintronics, the sample heterogeneity determines the onset of current-driven magnetization motion. While often a significant effort is made in enhancing the resolution of an experimental technique to obtain a deeper insight into the physical properties, here we want to emphasize that an advantageous data analysis has the potential to provide a lot more insight into given data set, in particular when being close to the resolution limit where the noise becomes at least of the same order as the signal. In this work, we introduce two to…

Statistical Mechanics (cond-mat.stat-mech)FOS: Physical sciencesComputational Physics (physics.comp-ph)Physics - Computational PhysicsCondensed Matter - Statistical Mechanics
researchProduct

Low-cost scalable discretization, prediction and feature selection for complex systems

2019

The introduced data-driven tool allows simultaneous feature selection, model inference, and marked cost and quality gains.

0303 health sciencesMultidisciplinary010504 meteorology & atmospheric sciencesDiscretizationComputer scienceData classificationProbabilistic logicComplex systemSciAdv r-articlesFeature selectioncomputer.software_genre01 natural sciences03 medical and health sciencesRange (mathematics)ScalabilityData miningCluster analysisAlgorithmcomputerResearch ArticlesMathematicsResearch Article030304 developmental biology0105 earth and related environmental sciences
researchProduct

A deeper look into natural sciences with physics-based and data-driven measures

2021

Summary With the development of machine learning in recent years, it is possible to glean much more information from an experimental data set to study matter. In this perspective, we discuss some state-of-the-art data-driven tools to analyze latent effects in data and explain their applicability in natural science, focusing on two recently introduced, physics-motivated computationally cheap tools—latent entropy and latent dimension. We exemplify their capabilities by applying them on several examples in the natural sciences and show that they reveal so far unobserved features such as, for example, a gradient in a magnetic measurement and a latent network of glymphatic channels from the mous…

0301 basic medicineDynamical systems theory02 engineering and technologyMachine learningcomputer.software_genreData-drivenSet (abstract data type)03 medical and health sciencesArtificial IntelligenceEntropy (information theory)Dimension (data warehouse)lcsh:ScienceApplied PhysicsMultidisciplinarybusiness.industryPhysicsPerspective (graphical)MagnetismExperimental dataPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology030104 developmental biologyPerspectiveComputer Sciencelcsh:QRelaxation (approximation)Artificial intelligence0210 nano-technologybusinesscomputeriScience
researchProduct

Imputation of posterior linkage probability relations reveals a significant influence of structural 3D constraints on linkage disequilibrium

2018

Genetic association studies have become increasingly important in unraveling the genetics of diseases or complex traits. Despite their value for modern genetics, conflicting conclusions often arise through the difficulty of confirming and replicating experimental results. We argue that this problem is largely based on the application of statistical relation measures that are not appropriate for genomic data analysis and demonstrate that the standard measures used for Genome-wide association studies or genomics linkage analysis bear a statistic bias. This may come from the violation of underlying assumptions (such as independence or stationarity) as well as from other conceptual limitations …

Linkage disequilibriumComputer sciencePosterior probabilityEconometricsGenomicsImputation (statistics)Latent variableCategorical variableStatisticImputation (genetics)Genetic association
researchProduct

Quality-preserving low-cost probabilistic 3D denoising with applications to Computed Tomography

2021

AbstractWe propose a pipeline for a synthetic generation of personalized Computer Tomography (CT) images, with a radiation exposure evaluation and a lifetime attributable risk (LAR) assessment. We perform a patient-specific performance evaluation for a broad range of denoising algorithms (including the most popular Deep Learning denoising approaches, wavelets-based methods, methods based on Mumford-Shah denoising etc.), focusing both on accessing the capability to reduce the patient-specific CT-induced LAR and on computational cost scalability. We introduce a parallel probabilistic Mumford-Shah denoising model (PMS), showing that it markedly-outperforms the compared common denoising methods…

Computer sciencebusiness.industryGaussianPipeline (computing)Deep learningNoise reductionProbabilistic logicPattern recognitionReduction (complexity)symbols.namesakeWaveletScalabilitysymbolsArtificial intelligencebusiness
researchProduct

Toward a direct and scalable identification of reduced models for categorical processes.

2017

The applicability of many computational approaches is dwelling on the identification of reduced models defined on a small set of collective variables (colvars). A methodology for scalable probability-preserving identification of reduced models and colvars directly from the data is derived—not relying on the availability of the full relation matrices at any stage of the resulting algorithm, allowing for a robust quantification of reduced model uncertainty and allowing us to impose a priori available physical information. We show two applications of the methodology: (i) to obtain a reduced dynamical model for a polypeptide dynamics in water and (ii) to identify diagnostic rules from a standar…

0301 basic medicineMultidisciplinarybusiness.industryComputer scienceDimensionality reductionBayesian inferenceMachine learningcomputer.software_genre01 natural sciencesReduction (complexity)010104 statistics & probability03 medical and health sciencesIdentification (information)030104 developmental biologyPhysical informationPhysical SciencesA priori and a posterioriArtificial intelligenceData mining0101 mathematicsCluster analysisbusinessCategorical variablecomputerProceedings of the National Academy of Sciences of the United States of America
researchProduct