0000000000277552

AUTHOR

Antonio Lavecchia

0000-0002-2181-8026

showing 6 related works from this author

Identification of a new series of amides as non-covalent proteasome inhibitors

2014

Proteasome inhibition has emerged as an important therapeutic strategy for the treatment of multiple myeloma (MM) and some forms of lymphoma, with potential application in other types of cancers. 20S proteasome consists of three different catalytic activities known as chymotrypsin-like (ChT-L), trypsin-like (T-L), and, post-glutamyl peptide hydrolyzing (PGPH) or caspase-like (C-L), which are located respectively on the β5, β2, and β1 subunits of each heptameric β rings. Currently a wide number of covalent proteasome inhibitors are reported in literature; however, the less widely investigated non-covalent inhibitors might be a promising alternative to employ in therapy, because of the lack o…

AmideMagnetic Resonance SpectroscopyStereochemistryProtein subunitPeptideMolecular Docking SimulationDrug DiscoverymedicineHumansProteasome inhibitorDocking studiesMultiple myelomaPharmacologychemistry.chemical_classificationOrganic ChemistryGeneral Medicinemedicine.diseaseAmidesYeastMolecular Docking SimulationchemistryProteasomeBiochemistryNon-covalent inhibitorDocking (molecular)Covalent bondProteasome Inhibitors
researchProduct

A compound-based proteomic approach discloses 15-ketoatractyligenin methyl ester as a new PPARγ partial agonist with anti-proliferative ability

2017

AbstractProteomics based approaches are emerging as useful tools to identify the targets of bioactive compounds and elucidate their molecular mechanisms of action. Here, we applied a chemical proteomic strategy to identify the peroxisome proliferator-activated receptor γ (PPARγ) as a molecular target of the pro-apoptotic agent 15-ketoatractyligenin methyl ester (compound 1). We demonstrated that compound 1 interacts with PPARγ, forms a covalent bond with the thiol group of C285 and occupies the sub-pocket between helix H3 and the β-sheet of the ligand-binding domain (LBD) of the receptor by Surface Plasmon Resonance (SPR), mass spectrometry-based studies and docking experiments. 1 displayed…

Transcriptional Activation0301 basic medicinenatural productTime FactorsPeroxisome proliferator-activated receptorApoptosisLigandsPartial agonistArticleRosiglitazonePPAR_gammaJurkat Cells03 medical and health sciencesTransactivation0302 clinical medicineproteomicsHumansBinding siteReceptorMode of actionPI3K/AKT/mTOR pathwayCell Proliferationchemistry.chemical_classificationBinding SitesMultidisciplinaryProtein StabilityProtein Proliferator-Activated-Receptor PPARs Ligand-Binding Domain Chemical Proteomics Accurate Docking Pi3k/Akt Pathway Drug Discovery Anticancer compoundsReproducibility of ResultsEstersSurface Plasmon ResonanceMolecular Docking SimulationPPAR gammaKineticsHEK293 Cells030104 developmental biologychemistryBiochemistryDocking (molecular)030220 oncology & carcinogenesisThermodynamicsThiazolidinedionesproteomics PPAR_gamma natural productDiterpenes KauraneHT29 CellsScientific Reports
researchProduct

Identification of noncovalent proteasome inhibitors with high selectivity for chymotrypsin-like activity by a multistep structure-based virtual scree…

2016

Noncovalent proteasome inhibitors introduce an alternative mechanism of inhibition to that of covalent inhibitors, e.g. carfilzomib, used in cancer therapy. A multistep hierarchical structure-based virtual screening (SBVS) of the 65,375 NCI lead-like compound library led to the identification of two compounds (9 and 28) which noncovalently inhibited the chymotrypsin-like (ChT-L) activity (Ki = 2.18 and 2.12 μM, respectively) with little or no effects on the other two major proteasome proteolytic activities, trypsin-like (T-L) and post-glutamyl peptide hydrolase (PGPH) activities. A subsequent hierarchical similarity search over the full NCI database with the most active tripeptide-based inh…

0301 basic medicineNon-covalentVirtual screeningProteasome Endopeptidase ComplexStereochemistryProtein ConformationProteolysisDrug Evaluation PreclinicalTripeptideSubstrate Specificity03 medical and health scienceschemistry.chemical_compoundStructure-Activity RelationshipUser-Computer Interface0302 clinical medicineProtein structureCell Line TumorDrug DiscoverymedicineStructure–activity relationshipChymotrypsinHumansProteasome inhibitorCell ProliferationPharmacologyVirtual screeningmedicine.diagnostic_testOrganic ChemistryGeneral MedicineCarfilzomibPeptide scaffoldMolecular Docking SimulationProteasome inhibitors; Non-covalent; Peptide scaffold; Docking studies; Virtual screening030104 developmental biologyProteasomechemistryBiochemistryDocking (molecular)030220 oncology & carcinogenesisDocking studieProteolysisProteasome InhibitorsEuropean journal of medicinal chemistry
researchProduct

Optimization of peptidomimetic boronates bearing a P3 bicyclic scaffold as proteasome inhibitors

2014

Abstract A new series of pseudopeptide boronate proteasome inhibitors (2–3) was developed, through optimization of our previously described analogs of bortezomib, bearing a bicyclic 1,6-naphthyridin-5(6H)-one scaffold as P3 fragment (1). The biological evaluation on human 20S proteasome displayed a promising inhibition profile, especially for compounds bearing a P2 ethylene fragment, which exhibited Ki values in the nanomolar range for the ChT-L activity (e.g. 2a, Ki = 0.057 μM) and considerable selectivity for proteasome over bovine pancreatic α-chymotrypsin. Docking experiments into the yeast 20S proteasome revealed that the ligands are accommodated predominantly into the ChT-L site and t…

Proteasome Endopeptidase ComplexProtein ConformationStereochemistryPeptidomimeticAntineoplastic AgentsPeptidomimetic boronatePeptidomimetic boronates; Docing studies; Proteasome inhibitorsBortezomibchemistry.chemical_compoundCell Line TumorEndopeptidasesDrug DiscoverymedicineAnimalsHumansProteasome inhibitoranticancer drugTrypsinThreonineCell ProliferationPharmacologybiologyBicyclic moleculeBortezomibHydrolysisOrganic ChemistryActive siteGeneral MedicineBoronic AcidsCombinatorial chemistryMolecular Docking SimulationchemistryProteasomeDocking (molecular)Docking studieCaspasesDrug DesignPyrazinesProteolysisbiology.proteinCattlePeptidomimeticsProteasome InhibitorsLead compoundmedicine.drugEuropean Journal of Medicinal Chemistry
researchProduct

Development of Novel Selective Peptidomimetics Containing a Boronic Acid Moiety, Targeting the 20S Proteasome as Anticancer Agents

2014

This paper describes the design, synthesis, and biological evaluation of peptidomimetic boronates as inhibitors of the 20S proteasome, a validated target in the treatment of multiple myeloma. The synthesized compounds showed a good inhibitory profile against the ChT-L activity of 20S proteasome. Compounds bearing a β-alanine residue at the P2 position were the most active, that is, 3-ethylphenylamino and 4-methoxyphenylamino (R)-1-{3-[4-(substituted)-2-oxopyridin-1(2H)-yl]propanamido}-3-methylbutylboronic acids (3 c and 3 d, respectively), and these derivatives showed inhibition constants (Ki ) of 17 and 20 nM, respectively. In addition, they co-inhibited post glutamyl peptide hydrolase act…

Proteasome Endopeptidase ComplexPeptidomimeticStereochemistryCell Survivalanticancer agents; boronates; bortemib; Docking studies; Peptidomimetics; inhibitor; proteasomesAntineoplastic AgentsSaccharomyces cerevisiaedocking studieBiochemistrySubstrate Specificitychemistry.chemical_compoundCell Line TumorDrug DiscoverymedicineMoietyHumansGeneral Pharmacology Toxicology and PharmaceuticsPharmacologychemistry.chemical_classificationBinding SitesproteasomesBortezomibOrganic ChemistrybortezomibboronateBoronic AcidspeptidomimeticProtein Structure Tertiaryanticancer agentMolecular Docking SimulationinhibitorEnzymechemistryProteasomeBiochemistryDocking (molecular)Molecular MedicinePeptidomimeticsGrowth inhibitionDrug Screening Assays AntitumorProteasome InhibitorsBoronic acidmedicine.drug
researchProduct

Development of peptidomimetic boronates as proteasome inhibitors.

2013

Abstract Proteasome inhibition has emerged over the past decade as an effective therapeutic approach for the treatment of hematologic malignancies. It is a multicatalytic complex, whose proteolytic activity relies in three types of subunits: chymotrypsin-like (β5), trypsin-like (β2) and caspase-like (β1). Most important for the development of effective antitumor agents is the inhibition of the β5 subunits. In this context, the dipeptide boronate bortezomib (Velcade ® ) represents the first proteasome inhibitor approved by the FDA and the lead compound in drug discovery. This paper describes the synthesis and biological evaluation of a series of conformationally constrained pseudopeptide bor…

Boron CompoundsModels MolecularProteasome Endopeptidase ComplexPeptidomimeticStructure-activity relationshipsPeptidomimetic boronates; Proteasome inhibitors; Docking studiesPharmacologyPeptidomimetic boronateDockingchemistry.chemical_compoundStructure-Activity RelationshipDrug DiscoverymedicineHumansProteasome inhibitorPharmacologyDipeptideDose-Response Relationship DrugMolecular StructureDrug discoveryBortezomibOrganic ChemistryGeneral MedicineBiochemistrychemistryProteasomeDocking (molecular)Proteasome inhibitorPeptidomimeticsLead compoundProteasome Inhibitorsmedicine.drugEuropean journal of medicinal chemistry
researchProduct