0000000000278023

AUTHOR

Johan Taflin

showing 3 related works from this author

Bifurcations in the elementary Desboves family

2017

International audience; We give an example of a family of endomorphisms of $\mathbb{P}^2(\mathbb{C})$ whose Julia set depends continuously on the parameter and whose bifurcation locus has non-empty interior.

[ MATH ] Mathematics [math]Pure mathematicsEndomorphismMathematics - Complex VariablesApplied MathematicsGeneral Mathematics010102 general mathematicsDynamical Systems (math.DS)MSC: 32H50 37F4516. Peace & justice01 natural sciencesJulia setDynamicsRational mapsBifurcation locus0103 physical sciencesFOS: Mathematics32H50 37F45 37F50010307 mathematical physics0101 mathematics[MATH]Mathematics [math]Complex Variables (math.CV)Mathematics - Dynamical SystemsMathematics
researchProduct

Blenders near polynomial product maps of $\mathbb C^2$

2021

In this paper we show that if $p$ is a polynomial which bifurcates then the product map $(z,w)\mapsto(p(z),q(w))$ can be approximated by polynomial skew products possessing special dynamical objets called blenders. Moreover, these objets can be chosen to be of two types : repelling or saddle. As a consequence, such product map belongs to the closure of the interior of two different sets : the bifurcation locus of $H_d(\mathbb P^2)$ and the set of endomorphisms having an attracting set of non-empty interior. In an independent part, we use perturbations of H\'enon maps to obtain examples of attracting sets with repelling points and also of quasi-attractors which are not attracting sets.

PolynomialEndomorphismMathematics::Dynamical SystemsMathematics - Complex VariablesApplied MathematicsGeneral Mathematics010102 general mathematicsClosure (topology)BlendersattractorsDynamical Systems (math.DS)01 natural sciencesSet (abstract data type)CombinatoricsBifurcation locusProduct (mathematics)AttractorFOS: MathematicsComplex Variables (math.CV)0101 mathematics[MATH]Mathematics [math]Mathematics - Dynamical SystemsbifurcationsSaddleMathematics
researchProduct

Attracteurs et bifurcations en dynamique holomorphe

2019

Bifurcations[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-CV] Mathematics [math]/Complex Variables [math.CV][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]BlendersAttractorsBifurcation[MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV]AttracteursMélangeur
researchProduct