0000000000278023
AUTHOR
Johan Taflin
Bifurcations in the elementary Desboves family
International audience; We give an example of a family of endomorphisms of $\mathbb{P}^2(\mathbb{C})$ whose Julia set depends continuously on the parameter and whose bifurcation locus has non-empty interior.
Blenders near polynomial product maps of $\mathbb C^2$
In this paper we show that if $p$ is a polynomial which bifurcates then the product map $(z,w)\mapsto(p(z),q(w))$ can be approximated by polynomial skew products possessing special dynamical objets called blenders. Moreover, these objets can be chosen to be of two types : repelling or saddle. As a consequence, such product map belongs to the closure of the interior of two different sets : the bifurcation locus of $H_d(\mathbb P^2)$ and the set of endomorphisms having an attracting set of non-empty interior. In an independent part, we use perturbations of H\'enon maps to obtain examples of attracting sets with repelling points and also of quasi-attractors which are not attracting sets.