0000000000278295

AUTHOR

Nils-eike Weber

Reversible Photochemical Control of Doping Levels in Supported Graphene

Controlling the type and density of charge carriers in graphene is vital for a wide range of applications of this material in electronics and optoelectronics. To date, chemical doping and electrostatic gating have served as the two most established means to manipulate the carrier density in graphene. Although highly effective, these two approaches require sophisticated graphene growth or complex device fabrication processes to achieve both the desired nature and the doping densities with generally limited dynamic tunability and spatial control. Here, we report a convenient and tunable optical approach to tune the steady-state carrier density and Fermi energy in graphene by photochemically c…

research product

Dimensional Confinement in Carbon-based Structures - From 3D to 1D

We present an overview of charge transport in selected one-, two- and three-dimensional carbon-based materials with exciting properties. The systems are atomically defined bottom-up synthesized graphene nanoribbons, doped graphene and turbostratic graphene micro-disks, where up to 100 graphene layers are rotationally stacked. For turbostratic graphene we show how this system lends itself to spintronic applications. This follows from the inner graphene layers where charge carriers are protected and thus highly mobile. Doped graphene and graphene nanoribbons offer the possibility to tailor the electronic properties of graphene either by introducing heteroatoms or by confining the system geome…

research product